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Abstract

The fascinating two-dimensional (2D) materials are being potentially applied

in various fields from science to engineering benefitting from the charming

physical and chemical properties on optics, electronics, and magnetism, com-

pared with the bulk crystal, while piezotronics is a universal and pervasive

phenomenon in the materials with broking center symmetry, promoting the

new field and notable achievements of piezotronics in 2D materials with

higher accuracy and sensitivity. For example, 20 parts per billion of the

detecting limitations in NO2 sensor, 500 μm of spatial strain resolution in flexi-

ble devices, and 0.363 eV output voltage in nanogenerators. In this review,

three categories of 2D piezotronics materials are first introduced ranging from

organic to inorganic data, among which six types of 2D inorganic materials are

emphasized based on the geometrical arrangement of different atoms. Then,

the microscopic mechanism of carrier transport and separation in 2D

piezotronic materials is highlighted, accompanied with the presentation of

four measured methods. Subsequently, the developed applications of 2D

piezotronics are discussed comprehensively including different kinds of sen-

sors, piezo-catalysis, nanogenerators and information storage. Ultimately, we

suggest the challenges and provide the ideas for qualitative–quantitative
research of microscopic mechanism and large-scale integrated applications of

2D piezotronics.
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1 | INTRODUCTION

Piezotronics, regulating the carrier transport by piezo-
potential,1–4 has received significant attentions and substan-
tial expansion for intrinsic applications in piezoelectric,
piezophototronics, and flexible devices due to the universal-
ity and pervasiveness of internal and external strain in the
devices and non-center symmetrical semiconductors.5–12

Simultaneously, two-dimensional (2D) materials were
widely explored on optics,13–24 electronics,25–33 and magne-
tism.34–41 since the first discovery of single atomic thickness
graphene. Thus, piezotronics based on 2D materials was
presented and developed rapidly from microscopic mecha-
nism, various materials to the practical applications on
nanogenerators, sensors, catalysis, information storage, and
other flexible devices.42–54

The entrance of piezotronics from 2D materials was
opened thoroughly since the first experimental confirma-
tion from 2D MoS2 by Hone and Wang groups in 2014,
where piezo-voltage and output current were detected only
from MoS2 flakes with odd number of atomic layers.31

Then, piezotronics based on 2D materials has been grown
into forest since the expansion from black phosphorus
(BP),55–59 hexagonal boron nitride (h-BN),60–63 transition
metal dichalcogenide (TMDCs) and Janus TMDCs,63–72 II-
VI semiconductors,73–79 III-V,80–88 Group-III mono-
chalcogenides (III-VI),89,90 and Janus III-VI,91,92 Group-IV
monochalcogenides (IV-VI),93–97 Group-V (V-V),98 and so
on.99–109 At the same time, the variety of applications of
piezotronics from 2D materials were achieved on flexible
optoelectronics, piezotronic catalysis, biological medicine,
information storage, and so forth.

Herein, we introduce three categories of 2D materials
for piezotronics at first, where six kinds of inorganic crystals
are distinguished according to the composition and struc-
ture of monolayer materials. Then, the reported methods
for detecting piezotronic signal and mechanism of 2D
piezotronics are concluded and discussed. Additionally, the
applications, evolvement, and presented problems are rev-
ealed and proposed to promote the advancement of various
sensors, nanogenerators, piezo-catalysis and information
storage. Finally, the challenges and visions are furnished to
expand the depth and breadth of 2D piezotronics. This
review is aimed at providing a top view of the development,
problem, and prospect of piezotronics in 2D materials.

2 | 2D MATERIALS FOR
PIEZOTRONICS

Piezotronics is presented in the materials with centro-
symmetric breaking, where the centers of gravity from
the cations and anions are not coincided when applied

an external strain, leading to the generation of piezo-
potential in the interface between the semiconductors
and the metals. The piezo-potential will modulate the
Schottky barrier height (SBH) and output current passing
through the interface, resulting in the enhanced or weak-
ened sensitivity factor.75 Therefore, 2D materials with
non-center symmetry structure have the potential for
exploiting piezotronics. We divide the reported 2D mate-
rials for piezotronics into three categories: 2D inorganic
materials with non-center symmetry structure originally,
modulated 2D materials who possess center symmetry
structure originally, and 2D organic perovskites.

2.1 | 2D inorganic materials

Reed group calculated and predicted the piezotronic
monolayer materials among 1173 2D layer materials from
the materials project database with more than 50 000 inor-
ganic crystals.106 325 monolayer 2D crystals were identi-
fied to be potential 2D piezotronic materials, which lack
the center symmetry structure originally. And the reported
2D monolayer piezotronic materials currently can be clas-
sified into six categories according to the crystal structure,
containing TMDCs and Janus TMDCs, II-VI, III-V, III-VI
and Janus III-VI, IV-VI, and V-V (Figures 1 and 2).

2.1.1 | TMDCs and Janus TMDCs

Monolayer TMDCs are usually marked as MX2, where
M represents transition metal elements and X indicates
chalcogen atoms.63–65 Monolayer piezotronic TMDCs have
the hexagonal crystal structure and D3h symmetry with
the space group p�6m2 .64,71,110 Density functional theory
was calculated and the experiment was performed to
confirm the piezoelectric coefficient and bandgap of
TMDCs to be the range of 2.12–13.54pmV�1,63–65,70 and
0.52–2.1 eV,8,65,66,111 respectively (Figure 2A). Meanwhile,
the piezoelectric coefficient of TMDCs is increased with
increasing the atomic number of chalcogen atoms or
decreasing the atomic number of transition metal atoms.64

Janus TMDCs are used to be presented as MXY, where
X ≠ Y, M is transition metal elements, X and Y indicate
chalcogen atoms.67,71,112 For different atomic radius and
electronegativities of X and Y atoms, bond lengths from
M-X and M-Y are different from each other and symmetry
along vertical direction is broken, resulting in a lower sym-
metry than monolayer TMDCs. The site symmetry and
space group of monolayer Janus TMDCs are C3v and
P3m1,71,92,112 respectively. The range of piezoelectric coef-
ficients of in-plane (d11) and out-of-plane (d31) are 2.26–
5.30 pm V�1 and 0.007–0.30 pm V�1,71,92 respectively.
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2.1.2 | II-VI

Monolayer II-VI semiconductors are expressed as MX,
where M is II atoms and X is VI atoms.79 Monolayer II-VI
semiconductors have a honeycomb structure with non-
centrosymmetric atom arrangement.77,78 Piezoelectric coef-
ficient and bandgap of monolayer II-VI were calculated to
be the range of �1.16 to 26.7 pm V�1,70,73,79 and 0.66–
5.34 eV,76–78 respectively (Figure 2B). Piezoelectric coeffi-
cients were predicted to be enhanced by decreasing the
atomic number of M (M = Ba, Mg, Zn, Cd) or increasing
the atomic number of M atoms (M = Ca, Sr, Ba).63,73,79

2.1.3 | III-V

Monolayer III-V semiconductors are also shown as MX, where
M is III atoms and X is V atoms.86 The crystal structure can be
divided into in-plane hexagonal and non-plane hexagonal,
where those with in-plane structure are stable in the air. The

space group and symmetry of monolayer III-V with in-plane
structure are p�6m2 and D3h,

80,81,86 respectively (Figure 1C, i).
And the piezoelectric coefficient and bandgap of monolayer
III-V are from 0.09 to 5.5 pmV�1,63,84 and 0.31 to 5.9 eV,81,84

respectively (Figure 2C,D). While the space group and sym-
metry of III-V semiconductors with non-plane structure are
Pmn21 andC2v.

80,85 For the non-plane structure, the piezoelec-
tric coefficient of monolayer III-V semiconductors has two
kinds: in parallel (d11) and perpendicular (d31) planes, which
are in the scope of 0.02–1.50pmV�1 and 0.02–0.57pmV�1,
respectively.63,82,84 The bandgap is 0.74–2.49 eV.81,83,85 Besides,
the piezoelectric coefficients of d11 and d31 increase with
decreasing the atomic number of V atoms or increasing the
atomic number of III atoms except for AlN,GaN, and InN.

2.1.4 | III-VI and Janus III-VI

III-VI semiconductors can be represented as MX or
MMXX (M = Ca, In; X = S, Se, Te). Space group and

FIGURE 1 Piezoelectric coefficients and crystal structures of monolayer TMDCs and Janus TMDCs (A), II-VI (B), III-V (C), III-VI and

Janus III-VI (D), IV-VI (E), V-V (F)
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symmetry belong to p�6m2 and D3h, respectively.
89 The

piezoelectric coefficient of d11 is in the range of 1.12–
1.98 pmV�1.70,87 The bandgap is from 1.32 to 2.36 eV.91,92

When M or X is replaced by other atoms, III-VI becomes
Janus III-VI, termed as M2XX0 or MM0X2 (M, M0 = Ca,
In; X, X0 = S, Se, Te).91 Janus III-VI belongs to layered
hexagonal structure with site symmetry D3.

91 The piezo-
electric coefficients of d11 and d31 are from 1.91 to
8.47 pmV�1 and from 0.07 to 0.46 pmV�1, respec-
tively.91,92 And the bandgap is from 0.89 to 2.03 eV
(Figure 2E,F).91,92

2.1.5 | IV-VI

Four types of structures are contained in monolayer IV-
VI semiconductors, which are indicated by MX or MX2

(M = Sn, Ge; X = Se, S). For the presentation of MX,

puckered or hexagonal crystal structures were reported
(Figure 1E, i–iii). One of the puckered structures is alter-
nated by the zigzag line (Figure 1E, i), like black pho-
sphorene, with C2v site symmetry and Pmn21 space
group,80,95,96 And piezoelectric coefficient d11 and
bandgap of this MX are 75.43–250.28 pm V�1 and 0.77–
1.37 eV.94 The other puckered structure of MX shows a
rectangular Wigner-Seitz cell alternated by the arm-
chair direction with piezoelectric coefficient d11 and
bandgap in the range of 20.7–91.56 pm V�1 and 1.62–
1.86 eV (Figure 1E, ii). Simultaneously, the MX with
hexagonal structure (Figure 1E, iii) presents that piezo-
electric coefficient d11 and bandgap are from �5.65 to
�4.63 pm V�1 and 2.21 to 2.47 eV,96 respectively.
While MX2 shows D2d site symmetry and p�4m2 space
group (Figure 1E, iv).95,97 The piezoelectric coefficient e14
and bandgap of MX2 are 3.45–3.81� 10�10 Cm�1 and
0.54–1.44 eV (Figure 2G,H).97

FIGURE 2 Piezoelectric coefficients and bandgap of monolayer TMDCs (A), II-VI (B), III-V (C,D), III-VI and Janus III-VI (E,F), IV-VI

(G,H), V-V (I)

990 ZHANG ET AL.



2.1.6 | V-V

Monolayer V-V semiconductors possess α-phase and
β-phase induced by their flexible structures and special
symmetry.113 The space group and symmetry of α-phase
and β-phase are calculated to be C2v, Pmn21 and C3v,
P3m1,80,98 respectively. The piezoelectric coefficient d11
and bandgap of α-phase are 6.94–243.45 pm V�1 and
0.29–2.18 eV,98 while those of β-phase are 0.67–
4.83 pm V�1 and 1.49–1.98 eV (Figure 2I).98 Both piezo-
electric coefficients d11 from α-phase and β-phase of
V-V materials increase with increasing the atomic num-
ber of V cation.

2.2 | Modulated 2D materials

The piezotronic engineering has been developed in
graphene-like 2D materials by modulating the interfaces or
defects in 2D materials, which possess a center symmetric
structure originally. Three techniques were explored for
changing center symmetric structure to non-center symme-
try: interface interaction,114 atomic adsorption,115–122 and
introducing defects (Figure 3).123,124

The 2D materials with center symmetry structure origi-
nally could generate piezo-response with the modulation
from interfaces. Kholkin group observed piezotronic
response in graphene with the chemical interaction

FIGURE 3 A, Schematic diagram of the piezoelectric activity of monolayer graphene on the SiO2 substrate. B,C,

Schematic of the PFM measurement and piezo-response of graphene supported on SiO2 substrate and suspended graphene.

Reproduced with permission.114 Copyright 2015, spring nature. D, Schematic diagram of different absorbed atoms on

graphene. E, Dependence of equibiaxial strain on electric field for different absorbed position of Li+ on graphene. F,

Dependence of equibiaxial strain on electric field for different absorbed atoms on graphene. Reproduced with permission.116

Copyright 2012, American Chemical Society. G,H, Schematic of circular (G) and triangular (H) defects in graphene. I,

Dependence polarization on the external strain of graphene with triangular defects. Reproduced with permission.123 Copyright

2012, American Institute of Physics
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between graphene and oxygen atoms from SiO2 substrate
(Figure 3A–C).114 The piezo-response from graphene
supported by SiO2 substrate is four times than that of
suspended one, indicating the interaction between graphene
and substrate induces the change of interface properties of
graphene, which leads to non-center symmetry and
piezotronic material of graphene.

Selective surface adsorption of atoms on non-piezotronic
graphene could also break center symmetry and generate
piezotronic effects. Reed group found absorbed Li+ atoms on
graphene could produce non-center symmetric graphene
and piezo-response (Figure 3D–F).116 The absorbed position
on graphene does not affect the piezoelectric coefficient sig-
nificantly. While the species of absorbed atoms has a strong
influence on the piezoelectric coefficient d31.

Non-center symmetric internal defects in graphene can
induce piezotronic effect simultaneously. Sharma et al.
introduced circular and triangular defects in graphene by
electron beam irradiation (Figure 3G–I).123 The graphene
with circular defect does not show piezo-response, while
that with triangular defects gives a piezoelectric coefficient

of 0.124 C m�2. Then, Kelany et al. built two hole-like
defects in monolayer graphene with changing the symme-
try of graphene from D6h into D3h and C2v, respectively.

118

Both types of defects present the piezoelectric response,
where the piezoelectric value is as large as
5.6 ± 0.4 � 10�10 C m�1.

2.3 | 2D organic–inorganic hybrid
perovskites

Organic–inorganic hybrid perovskites have developed into
a new type of 2D piezotronic material.125–133 The organic–
inorganic hybrid perovskites have already made into
monolayer 2D sheets in 2015 (Figure 4A,B).125 Mitzi group
first detected the piezo-response from (PMA)2PbBr4,
(PEA)2PbI4, (NMA)2PbBr4, (NEA)2PbI4, and (NEA)2PbBr4
by piezo-response force microscopy (PFM) and confirmed
the non-center symmetric structure of those organic–
inorganic hybrid perovskites (Figure 4C).126 Then, Xiong
group measured the piezo-amplitude from (ATHP)2PbBr4

FIGURE 4 A,B, Optical (A) and AFM image (B) of monolayer (C4H9NH3)2PbBr4 perovskites. Reproduced with permission.125 Copyright

2015, American Association for the Advancement of Science. C, Schematic diagram illuminates piezo-response on driving voltage and

frequency (inset). Reproduced with permission.126 Copyright 2017, American Chemical Society. D, PFM images of (ATHP)2PbBr4. E,F, PFM

resonance frequency (E) and piezoelectric amplitude (F) of (ATHP)2PbBr4 and (CHA)2PbBr4. Reproduced with permission.127 Copyright

2020, American Chemical Society
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and (CHA)2PbBr4 perovskites and confirmed the broken
inversion symmetry by second harmonic generation
(SHG).127 In short, organic–inorganic hybrid perovskites
are being explored as a new 2D piezotronic material.

3 | BASICS OF PIEZOTRONICS FOR
2D MATERIALS

Experimental measurement of piezo-response of 2D
materials is important for developing piezotronics of
2D materials. Four methods have been reported to
detect piezo-response: bending and releasing of flexible
devices,31,134–136 atomic force microscopy (AFM),137–142

PFM,143–148 and lateral excited scanning probe microscopy
(SPM) (Figure 5A–D).36,52,149

The mechanism of piezotronics from 2D materials is
similar to the modulated output current through the inter-
faces between metal and semiconductor,31,44,150–154 or p-n
junction.44,155–157 For the interface between metal and
semiconductor, we take n-type semiconductor for example
(Figure 5E,F), where Schottky contact is created. The out-
put current is decided by the SBH, which is modulated by
the piezo-potential. The piezo-potential is induced by the
center deviation of positive and negative charges when
applied the external strain.158 The negative piezo-potential

around the interface increases the SBH and decreases the
output current, while the positive piezo-potential
around the interface reduces the SBH and enhances
the output current, when applied external strain.44 On
the other hand, for the interface of p-n junction
(Figure 5G,H), we take n-type 2D materials as the
piezotronic materials. The negative piezo-potential
repels electrons and increases the energy band height
in n-type interface, resulting in broadening the deple-
tion zone in n-type semiconductor and reducing the
output current. While the positive piezo-potential
attracts electrons and reduces the energy band height
in n-type interface, leading to narrowing the depletion
zone in n-type semiconductor and enhancing current
when applied the external strain.44

4 | APPLICATIONS OF
PIEZOTRONICS FROM 2D
MATERIALS

According to the mechanism of piezotronics from 2D mate-
rials, the output current will be regulated to increase or
decrease when applied the external strain. Thus, the gauge
factor for related sensors will be enhanced or reduced, causing
scrambling research of diverse applications, such as various

FIGURE 5 Methods for detecting piezo-response, A, Bending and releasing of flexible devices. Reproduced with permission.31 Copyright 2014,

Springer Nature. B, AFM. Reproduced with permission.137 Copyright 2014, Springer Nature. C, PFM. Reproduced with permission.145 Copyright

2016, American Association for the Advancement of Science. D, SPM. Reproduced with permission.149 Copyright 2018 Elsevier Ltd. E,F, Modulated

SBH in the interface between metal and n-type 2D materials, when applied the tensile strain (E) and compressive strain (F). Reproduced with

permission.44 Copyright 2018, Elsevier Ltd. G,H, Regulated energy band structure and depletion zone in p-n junction with n-type 2D materials as

piezotronic materials, when applied the tensile strain (G) and compressive strain (H). Reproduced with permission.44 Copyright 2018, Elsevier Ltd
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sensors,158–180 nanogenerators,181–192 piezo-catalysis,193–195

information storage,196–199 and so on.

4.1 | Sensors

For the superiority of enhanced responsiveness of sensors
combined with piezotronics, compared with those of Ohmic
contact, trace sensors based on 2D piezotronic materials
have been developed to enhance the sensitivity and lower
the detected limitation. Such as, strain, toxic gas, pulse
blood pressure, photodetector, humidity, and so on.

4.1.1 | Strain sensor

The basic principle of 2D piezotronics is to transform
mechanical signal to electrical signal under the external
strain. Therefore, strain sensor is the basic sensing in 2D
piezotronics sensors. Zhang et al. investigated the

conductivity of MoS2 devices with AFM tip contacting at
the center and near the edge of the triangular sample
(Figure 6A–C).138 When contacting at the center of MoS2,
the interaction can be equaled to compressive stress
which induces negative piezo-charges in the interface,
resulting in enhanced conductivity of MoS2. While con-
tacting near the edge of MoS2 leads to reduced conductiv-
ity for the positive piezo-charges in the interface. The
highest gauge factor of those AFM tip contacting is more
than 1000 larger than those of conventional metal
sensors. Then, Hu et al. found grain boundaries in mono-
layer MoS2 can enhance piezotronic effect for generating
polarization along both sides of the grain boundaries
(Figure 6D–F).162 Hu group also realized high spatial
strain resolution of �500 μm in 2D In2Se3 device, where
gauge factor of the strain sensor is 237 with uniaxial
strain from �0.39% to 0.39%, which is two orders of
magnitude higher sensitivity than graphene-based strain
sensors.164 Another outstanding contribution is piezotro-
nic strain-gated OR logic gates achieved by Wang group.

FIGURE 6 A,B, I–Vb characteristics of MoS2 device with AFM tip contacting the center (A) and near the edge (B) of triangular film. C,

Current response on different strain. Reproduced with permission.138 Copyright 2015, Spring Nature. D, Schematic diagram of measured

current with grain boundary. E, Current density of monolayer MoS2 without and with grain boundaries. F, Output current under different

strain. Reproduced with permission.162 Copyright 2020, American Chemical Society. G–I, Strain-gated OR logic gates of ZnO piezotronics

transistors. Reproduced with permission.164 Copyright 2018, American Chemical Society
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Four states, “00”, “01”, “10”, “11” are identified by the out-
put current in ultrathin ZnO piezotronics transistor with
2 nm channel length. “00” state is without strain and “11”
state is the simultaneous stress on source and drain elec-
trodes (Figure 6G–I).163 Those qualitative research have
pioneered, and quantitative research is needed to promote
practical applications in future.

4.1.2 | Gas sensor

For the large surface area and higher sensitivity improved
by piezotronics, toxic gas sensors have been researched in

full swing.160,166,167 Wang group achieved highly sensitive
NO2 sensor with monolayer MoS2 and reduced the
detected limitation to 20 parts per billion (ppb) combined
with piezotronics. The sensitivity is enhanced to 671%
and the response time reduced to 16 s with 0.67% tensile
strain when the concentration of NO2 is 400 ppb
(Figure 7A–C).166 Then, Xue group confirmed the higher
response of NH3 sensor by piezotronics in Au-MoSe2
composites.167 Compared with the sensor of MoSe2, the
Au decorated MoSe2 sensor provided a Schottky contact,
where electrons tend to transport to Au for higher work
function. When NH3 is absorbed to Au-MoSe2 compos-
ites, the electrons transported to Au will be released to

FIGURE 7 A, Schematic diagram illuminated the measurement for NO2 sensor based on monolayer MoS2 flexible devices. B,

Dependence of gauge factor of NO2 sensor on external strain with different NO2 concentration. C, The response and recovery time of the

NO2 sensor without illumination and strain (I), and with 4 mW cm�2 red LED illumination and 0.67% tensile strain (II). Reproduced with

permission.166 Copyright 2018, Elsevier BV and Science China Press. D, Schematic illustration of self-powered NH3 sensor driven by MoS2-

flake based piezoelectric nanogenerator. E, Schematic of NH3 sensing mechanism and energy band structure Au-MoSe2 composites. F,

Dynamic resistance change of MoSe2 and Au-MoSe2 film sensor with different NH3 concentration at room temperature. Reproduced with

permission.167 Copyright 2019, Elsevier Ltd. G, Schematic diagram illuminating pulse and breath sensors based on α-In2Se3 device. H, Pulse

signals monitored by flexible α-In2Se3 device. I, Three breathing states monitored by flexible α-In2Se3 device. Reproduced with permission.170

Copyright 2019, American Chemical Society
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react with NH3 to generate NO, which increased the out-
put current and sensitivity (Figure 7D–F).

4.1.3 | Micro-vibration sensor

2D materials provide an important step in the develop-
ment of ultra-thin flexible electronics, miniaturization,
and wearable devices,168,169 while piezotronics gives a
higher sensitivity. Thus, artificial intelligence micro-vibration
sensors based on 2D piezotronics were exploited signifi-
cantly in recent years. Ahh et al. fabricated the MoS2-
based tactile sensor with graphene electrodes and showed
perfect mechanical flexibility with the strain at 1.98%.53

And Hu et al. reported the piezotronics based on α-In2Se3
flexible devices and achieved 1 order of magnitude higher
piezotronic output voltage than the values of reported 2D
piezotronic materials, where the output piezotronic volt-
age is 0.363 V for a 7-layer α-In2Se3 device under 1%
strain.170 The flexible devices were applied to monitor the
pulse and breath signals (Figure 7G–I). The monitored
pulsed signal gives two peaks obviously, responding to left
ventricular ejected blood wave and reflected wave from
the lower body. Besides, three types of breathing states
were also monitored, corresponding to normal, ragged,
and deep states, respectively. For all the cases, the output
signals suggest the micro-vibration sensor based on 2D
piezotronics has a good responsivity, while the temporal
and spatial resolutions should be considered to further
sensing.

4.1.4 | Photodetector

Piezo-potential promotes separation and transport of
photogenerated electrons and holes and increases the
output current, causing the enhanced photo-response and
developed piezophototronics of 2D materials.171–177 Those
piezophototronic sensors can be divided into two types of
contact: metal and 2D materials, and p-n junctions. For the
contact of metal and 2D materials, MoS2,

22,171,178 WSe2,
172

α-In2Se3,173 γ-InSe,174 and In1�xSnxSe,
175 were investigated

widely. It is interesting that by repairing the defect in MoS2
flexible phototransistor, a prominent piezophototronic sensor
was realized, where 5.6-fold enhancement of responsivity
is achieved under a 0.42% tensile strain (Figure 8A–C).171

For the p-n junction, homogeneous and heterogeneous p-n
junction were also developed (Figure 8D–F).176 MoS2 homo-
geneous p-n junction was realized by Wang group.177 The
enhancement of photoresponsivity and detectivity under
0.51% strain gives 619% and 319% compared with those with-
out external strain. Heterogeneous p-n flexible photodiode
was achieved by Li group with vertically stacking multilayer

p-WSe2 and monolayer n-MoS2.
176 The optimized photo-

responsivity increases by 86% under �0.62% strain along
armchair direction of MoS2.

177

4.1.5 | Humidity sensor

Humidity detection has been realized in MoS2/metal junc-
tion.115,170 When H2O is absorbed to monolayer MoS2, elec-
trons in MoS2 are captured by H2O molecular, resulting in
reduced carrier concentration and output current. While
applied the external strain to the flexible device, the piezo
potential is generated along zigzag direction, which modu-
lating SBH of MoS2/metal interface and output current. The
maximum current variation could reach 2048% with the
humidity changing from 63% to 5% under 0.61% tensile
strain (Figure 8G–I).178 However, the chemical reaction
between absorbed H2O and MoS2 will degrade 2D MoS2
gradually, therefore, the stability and durability should be
deliberated for humidity sensor in future.

4.2 | Nanogenerator

Energy harvesting based on 2D piezotronics provides a
breakthrough of flexible self-powered systems for the atomic
layer thickness, excellent mechanical performance, and
piezotronic properties of 2D materials.181–184 When applied
the tensile or compressive strain in 2D flexible devices,
piezo-potential is created in the interface of 2D materials
and metal electrodes, where electrons and holes in 2D mate-
rials are attracted to opposite polarity piezo-potential and
current is produced in the external circuits.184 When the
alternating strain is applied, the alternating current and volt-
age are generated.185 Thus, nanogenerator, converting
mechanical energy into electrical energy, is established. Wu
group first reported the 2D nanogenerator based on MoS2
with odd number of atomic layers and achieved 5.08% con-
version efficiency of mechanical to electrical energy from
monolayer MoS2 nanogenerator (Figure 9A–C).31 The
piezotronic output from monolayer MoS2 nanogenerator is
directly connected to the crystal orientation for different pie-
zoelectric coefficients along zigzag and armchair direc-
tions.31,143 At the same time, MoS2 nanogenerators in series
or in parallel showed consistent enhancements in output
voltages or currents, suggesting potential practical applica-
tion for powering nanodevices.

Since then, 2D nanogenerators based on various 2D
materials have been researched passionately, such as
MoSe2,

47 α-In2Se3,49 BP,55 hollow 2D MoS2 shells,185

BN,186 ZnO,187,188 bilayer WSe2,
191 multi-pores MoS2,

192

and so on. The bilayer WSe2 nanogenerator indicates that
stacking direction of TMDCs with even number of atomic
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layers determines symmetry and piezotronic performance
(Figure 9D–F).191 Another significant work is nano-
powered generator by monolayer MoS2 nanopores,
designed by Radenovic group (Figure 9G–I).192 Two liq-
uids with different concentrations are separated by MoS2
nanopores, therefore, a chemical potential gradient was
formed so that the ions could travel across the nanopore
spontaneously. For the surface charges around the
nanopores, passing ions will be selected according to
charge polarity, resulting in a net osmotic current. The
output voltage and current of this nanogenerator have

been successfully powered a MoS2 transistor. All those
pioneering works have laid the foundation for practical
applications of nanogenerators, the integrated and wear-
able nanogenerators need be scheduled in future.

4.3 | Piezo-catalysis

Photocatalytic water splitting and degradation of
organic pollutants are considered the most promising
solution to energy crisis and environmental pollution.

FIGURE 8 A, Optical image of the flexible piezophototronic detector fabricated with monolayer MoS2 on the PET substrate. B,C, Strain

dependence of photocurrent (B) and photoresponsivity (C) on different illumination intensities. Reproduced with permission.171 Copyright

2018, American Chemical Society. D, Schematic diagram of monolayer MoS2 homogenous p-n junction. E, Ids–Vds characteristics of MoS2
homogenous p-n junction with different tensile strains. F, Photoresponsivity of MoS2 homogenous p-n junction under different strains and

excited intensities. Reproduced with permission.176 Copyright 2018, IOP Publishing Ltd. G, Schematic diagram of MoS2/metal flexible device

for humidity detection. H, Dependence of changed relative current on external strain with different relative humidity (RH). I, Dependence of

current response on various strains and RH at a bias voltage of 10 V. Reproduced with permission.178 Copyright 2018, American Chemical

Society
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The suitable bandgap of 2D materials for absorbing
visible light from sunlight establishes the photocatalytic
foundation, and piezotronics enhances photocatalytic per-
formance. MoS2, WSe2, CdS, and WS2 have been applied to
catalytic water splitting or degrade organic pollutants with
the application of ultrasonic vibration.193–195 The piezo-
potential induced by ultrasonic vibration encourages the
separation of holes and electrons in 2D materials, which
reacted with water and dissolved O2 to generate •OH and
•O2

� radicals to degrade pollutants (Figure 10D–F).195

However, the enhanced performance by piezotronics cal-
culated in articles was also contained the separation of
various radicals and degraded small molecules promoted

by ultrasonic vibration natively, which increase the photo-
catalytic behaviors simultaneously. And the significant lattice
bending of multilayer nanosheets from MoS2, WS2, and
WSe2 should be also considered, which inducing piezo-
potential initially and might influence the piezo-catalytic
mechanism and performance simultaneously.

4.4 | Information storage

Information storage is the basic engineering for artificial
intelligence, where memristors are considered to be the
perfect candidates for nonvolatile memories and artificial

FIGURE 9 A, Output current along armchair and zigzag directions of monolayer MoS2 nanogenerators. B, Output voltage of four monolayer

MoS2 nanogenerators in parallel. C, Output current of four monolayer MoS2 nanogenerators in series. Reproduced with permission.31 Copyright

2014, Springer Nature. D, Dependence of output voltage of monolayer WSe2 (m-WSe2) and transferred bilayer WSe2 (tb-WSe2) nanogenerators on

external strain. E, Output voltage of m-WSe2 and tb-WSe2 nanogenerators with strain at 0.57% and 0.95%. F, The durability test of m-WSe2 and tb-

WSe2 nanogenerators with the strain at 0.89%. Reproduced with permission.191 Copyright 2017, Wiley-VCH. G, Schematic of MoS2 nanopores as

nanogenerators. H, Schematic diagram of the self-powered MoS2 transistor, where the current between drain (D) and source (S) is supplied by a

MoS2 nanopore nanogenerators and the gate (G) source is supported by the other MoS2 nanopore nanogenerators. I, Transfer curve of the self-

powered MoS2 transistor. Reproduced with permission.192 Copyright 2016, Springer Nature
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FIGURE 10 A, Schematic diagram illustrated photo-/piezo-catalytic mechanism of CdS nanosheet. B,C, Time depended catalytic

performance with (B) and without (C) light. Reproduced with permission.193 Copyright 2020, Springer Nature. D, Schematic showing the

piezo-/photo-catalytic mechanism of FETCP/MoS2 nanosheet. E, Catalytic degradation of FETCP/MoS2 nanosheet with different

condition. F, Cycling degradation tests of FETCP/MoS2 nanosheet. Reproduced with permission.195 Copyright 2019, Elsevier BV

FIGURE 11 A, Schematic of graphene/MoS2 flexible device. B,C, Repeatability (B) and retention (C) of graphene/MoS2 flexible

device. D, Schematic illuminates resistive switching mechanism. E, I–V curves of graphene/MoS2 flexible device under different strain. F,

Energy band diagram with piezotronic effect of graphene/MoS2 flexible device. Reproduced with permission.196 Copyright 2019, American

Chemical Society

ZHANG ET AL. 999



intelligence.196–199 Badhulika et al. fabricated piezotronic
memristor based on graphene/MoS2 2D nanohybrid,
where graphene improves the mobility for conductiv-
ity.196 The graphene/MoS2 memory shows excellent sta-
bility with resistive switching 500 cycles and endurance
with data retention of 104 s under 104 On/Off ratio
(Figure 11). Ag ions from the top Ag electrode penetrate
to the Cu electrodes gradually by increasing the voltage
between Ag and Cu electrodes, leading to the “On” state.
When applied the external strain, the negative potential
is created in the interface between graphene and MoS2,
causing reduced SBH, enhanced voltage distribution and
electric field intensity between MoS2 and Ag electrode.
Thus, the drift velocity of Ag ions increases and the volt-
age for “On” state is reduced with increasing the external
strain.

Information storage is a new direction for 2D
piezotronics. Careful design and lots of attention should be
paid to exploit the performance vigorously. For example,
reduced the “On” state voltage by reasonable designing the
thickness and quality of MoS2. Designing arrayed devices
with different “On” state voltage are applied to store various
information with avoiding serial interference.

5 | CONCLUSIONS AND PROSPECT

In this review, we present the 2D piezotronic materials
from inorganic to organic crystals with the original or
modulated centrosymmetric structure. Four kinds of
experimental measurement methods and mechanism of
2D piezotronics are described, containing bending and
releasing of flexible devices, AFM, PFM, and SPM. Vari-
ous applications were also exploited to improve the sensi-
tivity, limitation, resolution, and durability, such as
different sensors, nanogenerators, piezo-catalysis, and
information storage. Although the preliminary work has
laid the foundation for future research, challenges are
always existed in 2D piezotronics. Efforts might be
engaged as follows:

1. Excepting the piezo-potential induced by the external
strain, the electric band structure of 2D materials is also
sensitive to pressure engineering,200,201 which influences
the transport of electrons significantly. The output per-
formance of 2D piezotronics devices is decided by SBH
between 2D materials and electrodes,202 determined by
the energy of conduction band minimum or valence
band maximum for n-type or p-type 2D materials,
respectively. However, the external strain also modulates
bandgap and energy band extremum, further, the con-
ductivity type and output currents.203–205 For example,
the bandgap of monolayer MoS2 will be decreased from

1.883 to 1.690 eV under 1.49% compressive strain.203

The valence band maximum of monolayer MoS2 shifts
from K point to Γ point when applying compressive
strain, while conduction band minimum shifts from K
to the point between K and Γ points.204 Besides, the con-
ductivity type of monolayer TMDC could change from
semiconductor to metal under 11% external strain.205

The changed bandgap and shifted extreme point in
reciprocal space have a great influence on output voltage
and currents, which might be calculated in present
experiments. Thus, modulated output voltage and cur-
rent in 2D piezotronics should be considered the energy
band engineering simultaneously.

2. The various applications are the preliminary, qualita-
tive, quantitative research, and comparative explora-
tion in vertical and horizontal need be launched. For
example, for the piezo-catalysis, the types and concen-
tration of defects in 2D materials should be consid-
ered. For the various types of sensors, statistical
results should be performed for the inhomogeneous
crystal structure and local designed devices in single
sheet of 2D materials.

3. The separation and transport of electrons and holes in
different defects by piezotronics need to be calculated
and confirmed by experiments exhaustively. Defects
are the intrinsic properties in 2D materials, which
affect the carrier transport, electronic and optical
properties significantly.206 The well-known defects are
cationic or anionic vacancies, dislocations, and grain
boundaries, and so on, which are confirmed by first-
principles calculations and observed by high-angle
annular dark field scanning transmission electron
microscopy (HAADF-STEM).207–209 The concentra-
tion, distribution, and orientation of point defects
influence the separation and transport of carrier,
resulting in anisotropic electrical performance with
the same type of defect and different conductivities
along the same crystal orientation with different types
of defects.210–212 Meanwhile, the external strain can
change the distribution and types of defects.213–216

First, the tensile strain could lower the activation
energy of vacancy migration and induce the migration
of vacancies,213,214 leading to the redistribution of
vacancies, furtherly, changing the point defects to dis-
location. Second, the external strain favors the genera-
tion of vacancies in 2D materials,215 resulting in the
increasing concentration of vacancies. Third, the ori-
entation of line defects also depends on the mechani-
cal strain,216 which might rotate the orientation of
dislocation. Therefore, external strain could alter the
concentration, distribution, and types of defects,
which might influence the separation and transport of
carrier and electrical performance. However, the
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changed electrical performance induced by external
strain might be calculated in present piezotronics
experiments. Thus, the carrier separation and trans-
port related to defects in piezotronics need to be calcu-
lated and confirmed by experiments.

4. For the purpose of final practical application, arrayed
flexible devices with 2D piezotronics should be
exploited with avoiding serial interference. The refrac-
tion, diffraction, boundary reflection, and photon scat-
tering in 2D materials and arrayed devices might
cause serial interference and influence the resolution
of flexible devices during piezo-phototronics experi-
ments.217,218 At the same time, the carrier generation
and diffusion might lead to electrical serial interfer-
ence in piezotronics, which is connected to the size,
spacing, and distribution of single device, buffer layer
thickness, and epitaxial layer thickness of arrayed
devices.219,220 In order to avoid the serial interference,
independent electrodes for any single device in
arrayed devices are needed, which are difficult for
design and fabrication of arrayed devices. Thus, rea-
sonable design of flexible arrayed devices is necessary
to reduce the serial interference.

5. The growth of 2D materials needs further develop-
ment. Large area 2D materials and heterojunction
materials with the order of magnitude from centime-
ter to meter are urgently needed. And the 2D
piezotronics based on heterojunction should be
explored in full swing.

6. The experimental method of bending and releasing of
flexible devices for 2D piezotronics should be paid
much attention because the method is closer to practi-
cal applications. And the measured method of 2D
piezotronics need to be expanded furtherly.
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