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A B S T R A C T   

Patterned displays with self-powered features have been crucial for event-driven information communication 
and exchange in the Internet of things (IoT) applications. Here, we present a MXene enhanced alternating current 
electroluminescence (ACEL) device array integrated with the triboelectric nanogenerator (TENG) as the self- 
powered patterned display. The ACEL device is intrinsically transparent and stretchable. And its emission in-
tensity can be enhanced by 500% through filling 0.25 wt% MXene in the polymer matrix of emission layer, in 
accordance with the finite element analysis simulation of the electric field strength with various MXene loading. 
Finally, a patterned ACEL device is constructed and powered with a simple TENG for patterned display. This self- 
powered patterned ACEL display has considerable potential for applications of human-healthcare monitoring, 
information-security communication, and human-machine interface in IoT.   

1. Introduction 

Electroluminescence (EL), a phenomenon of light generation derived 
from an electric field, has been developed and utilized as vital part of 
illumination and displays in the plentiful fields including health- 
information monitoring [1–4], information-security communication 
[5–8], and human-machine interfaces [9,10]. Commonly, EL devices are 
classified into two categories: light-emitting diode (LED) and alternating 
current electroluminescence devices (ACEL). LED devices, such as 
organic LEDs [11–13], quantum dot LEDs [14–16], and p/n-junction 
LEDs [17–19], are driven at a low bias to cause the radiative recombi-
nation of electrons and holes; whereas for ACEL devices, a much higher 
electrical field intensity is usually necessary to induce the inelastic 
collision of luminescent center with high-energy electrons [20,21]. 
ACEL devices have attracted great attentions in the field of flexible 
electrons due to the uniformity of light emission, excellent contrast, high 
brightness, and extremely long working expectancy [22,23], however, 
the inevitable high driven voltage limits their application in human-
–machine interactions, artificial electronic skins, and smart wearable 

equipment in IoT. 
Recently, self-powered devices/systems driven by triboelectric 

nanogenerators (TENGs) have attracted widespread concerns. Origi-
nating from the Maxwell’s displacement current, TENG is first invented 
by Wang’s group [24,25], which provided an appropriate strategy to 
harvest randomly distributed or irregular mechanical energy (such as 
winds [26], rain drops [27,28], human-body movements [29–32], ocean 
waves [33], and acoustic waves [34], etc.) into electric energy. Due to 
the inherent high output voltage of TENG, it is convenient to build high 
electric field and illuminate the ACEL devices. Hence, the self-powered 
ACEL system could be achieved by integrating with TENGs. Neverthe-
less, higher brightness and lower driving voltage is also vital for appli-
cations of ACEL devices in wearable and self-powered communication in 
IoT, whereas very rare work have been conducted in this regard. 

Here, we introduce MXene into the emission layer to enhance the 
performance of self-powered ACEL devices. As a new class of two- 
dimensional (2D) materials consisting of transition metal and car-
bides/nitrides, MXene possesses outstanding electrochemical and ther-
moelectric properties [35–37]. Especially, MXenes have been utilized as 
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fillers to significantly improve the dielectric constant of polymer matrix 
[38–40]. In our work, the relative permittivity of polymer matrix (pol-
ydimethylsiloxane, PDMS) is considerably enhanced with various 
MXene loadings. Hence, the brightness of the ACEL is also improved by 
500% by loading 0.25 wt% MXene in the emission layer. A contact-mode 
TENG, with Cu as the positive charge collector and PTFE as the negative 
charge collector, is integrated with the ACEL to construct a self-powered 
ACEL system. The flexible patterned ACEL-TENG arrays are highly 
transparent, and would provide a powerful platform for self-power 
communication in IoT. 

2. Experimental 

2.1. Preparation of MXene 

Firstly, 0.5 g Ti3AlC2 was etched by 0.8 g LiF and 10 mL concentrated 
HCl for 24 h. The resultants were purified by centrifugation with de-ion 
water for four times. Then the obtained multilayer Ti3C2 was dispersed 
in 40 mL water in a flask with ultrasound under N2 atmosphere for 1 h. 
The Ti3C2 nanosheets were finally obtained. 

2.2. Synthesis of SWCNTs 

SWCNTs were synthesized through a chemical vapor deposition with 
catalyst in a horizontal tube at 1160 ◦C.as described in our previous 
work [41]. The carbon source (xylene) and catalyst (ferrocene) were 
carried by Ar mixed with 20% H2 to the high temperature zone. 

2.3. Fabrication of ACEL devices 

The ACEL device consisted of two transparent SWCNTs electrodes 
and emissive ZnS:Cu layer. Firstly, the PDMS (SYL-GARD184, Dow 
Corning) main agent and curing agent (10:1 by weight) were mixed and 
transferred to a vacuum oven to exhaust bubbles. The obtained trans-
parent PDMS solution was spin-coated onto glass substrate at 500 rpm, 
cured at 70 ℃ for 30 min, and then peeled off from the substrate. Sec-
ondly, the electrodes were fabricated by transferring synthesized 

SWCNTs on the PDMS film. The emissive layer was prepared by blending 
phosphor (ZnS:Cu) in PDMS matrix with a weight ratio of 20%. For 
MXene enhanced ACEL devices, MXene was added in the emissive layer 
with different weight ratio (0.00%, 0.25%, 0.50%, 0.75%, and 1.00%). 
Finally, two electrodes and emissive layer were stacked together to 
construct the ACEL device. 

2.4. Preparation of self-powered ACEL device 

A contact-separation mode TENG was fabricated based on two tribo- 
layers and two charge collector electrodes. The Polytetrafluoroethylene 
(PTFE) pretreated with oxygen plasma was used as negative tribo-layer. 
The negative charge collector was obtained by sputtering a layer of 
copper on the supporting substrate Kapton film. The corresponding 
positive tribo-layer and charge collector was a piece of copper foils 
adhered on 3 M foam tape, which serves as a buffer cushion. So, the 
ACEL device could be driven by a contact-separation modeled TENG 
through converting mechanical energy to electricity. 

2.5. Characterization and measurements 

The morphologies of MXene and the cross-section view of ACEL were 
measured by field-emission scanning electron microscopy (SU8020, 
Hitachi). The TEM image and SAED were collected through a JEM-TEM- 
2100F (JEOL). The crystal structure of ZnS:Cu power was identified 
using X-ray diffraction (D8- Advanced, Bruker). Raman spectra of 
SWCNTs were collected by a Micro-Raman spectrometer (LabRAM HR 
Evolution, Horiba JY). The electrical characteristics of TENG, including 
output voltage and short-circuit current were measured by a Keithley 
Model 6514 high-impedance electrometer. The EL spectra were ob-
tained through a compact spectrometer (NOVA, Ideaoptics). The ca-
pacitances of the polymer matrix were recorded on an Agilent E4980A 
Precision LCR meter at 1 kHz with custom LabVIEW programs. The 
relative permittivity (εr) of polymer matrix is determined by the 
following equation: 

Fig. 1. Structure and characteristics of ACEL device. (a) The schematic illustration of ACEL device, consisting of two SWCNTs transparent electrodes and an emissive 
layer of ZnS:Cu. (b and c) X-ray diffraction patterns, PL, and EL spectrum of ZnS:Cu. d) Raman spectrum of SWCNTs. (e and f) EL spectra and the integrated intensity 
of ACEL device under various voltage, the corresponding photographs are shown in the inset. Scale bar: 5 mm. 
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εr =
Cd
ε0S  

where C is the capacitance, ε0 is the vacuum permittivity (8.854 × 10− 12 

F m− 1), d is the thickness of the polymer matrix (120 µm), S is the area of 
electrode covering the polymer matrix. 

3. Results and discussions 

The ACEL device consists of three stacked components: two trans-
parent electrodes and one emission layer, as shown in Fig. 1a. The 
SWCNT film is utilized to construct the electrodes on PDMS. The emis-
sion layer is prepared by blending ZnS:Cu powders in PDMS matrix. 
Therefore, the ACEL devices in this work are intrinsically excellent 
transparent and stretchable. The detailed fabrication process of ACEL 

Fig. 2. Demonstration of self-powered ACEL devices. (a) Concept illustration of self-powered ACEL device. (b and c) Open circuit voltage and short circuit current of 
the TENG. (d and e) Output voltage, current, and power of the TENG under various load resistance. (f) Photograph of self-powered ACEL device. Scale bar: 1 cm. 

Fig. 3. Characterization of MXene. (a) TEM image and inset: SAED pattern of MXene Ti3C2 nanosheet. (b) Cross-section SEM image of MXene Ti3C2 nanosheets. (c) X- 
ray diffraction pattern of MXene Ti3C2 nanosheets. (d− f) XPS spectra of MXene Ti3C2 nanosheets and the curve-fitting results of Ti 2p, and C 1s. 
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device is presented in Fig. S1. The ZnS:Cu powders are investigated by X- 
ray diffraction, photoluminescence (PL), and electroluminescence (EL). 
As shown in Fig. 1b, the diffraction peaks centered at 26.9◦, 28.5◦, and 
30.5◦ are attributed to the scattering from the (1 0 0), (0 0 2) and (1 0 1) 
lattice surface of wurtzite ZnS (JCPDF # 36–1450), while those at 33.1◦

is from the lattice surface (200) of sphalerite phase (JCPDF # 05–0566). 
The PL and EL spectra of ZnS:Cu are presented in Fig. 1c. The emission at 
502 nm arises from the shallowly trapped electrons to the t2 level of 
Cu2+[42]. The Raman spectra of the SWCNTs are shown in Fig. 1d. The 
characteristic Raman peaks at 185 cm− 1 and 1585 cm− 1 are attributed 
to the radial breathing mode (RBM) and the tangential mode (G band), 
respectively [41,43]. The performance of ACEL device powered under 
various voltages is demonstrated in Figs. 1e and f. The brightness of 
ACEL devices increase along with the voltage. And the corresponding 
optical images are illustrated in the inset of Fig. 1f. 

As a vital part of self-power ACEL system, the TENG consisting of Cu 
and PTDE is illustrated in Fig. 2a. The output performance of the simple 
TENG is investigated and shown in Fig. 2b and c. The highest output 
voltage could reach 120 V, and the maximum short current is about 
2 μA. The peak output power of TENG is about 60 μW with the load 
resistance of 108 Ω (Fig. 2e). This contact-mode TENG could easily 
power the ACEL device, as shown in Fig. 2f. When pressing the TENG, 
the ACEL device was lighted up. The detailed operation process of the 
self-powered ACEL system is shown in supporting movie S1. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2021.106077. 

To enhance the performance of the self-powered ACEL system, a 
novel approach is utilized through decreasing the driving voltage of 
ACEL device. As is known, ACEL devices need to be driven at high- 
electric field intensity. And the emission powers (EP) could be depic-
ted with the following equation [44]: 

EP = εMV/(εMLM + εPLP)

where εM and εP are the relative permittivity of polymer matrix and 
phosphors, respectively; while LM and LP are the thickness of polymer 
matrix and phosphors. Therefore, the threshold driving voltage could be 
decreased through increasing the relative permittivity of polymer 
matrix. 

MXene as a new class of 2D materials have been broadly studied in 
electrochemical and thermoelectric applications, and have been 
demonstrated to improve the relative permittivity of polymer matrix. 
Here, we utilize MXene to enhance the self-powered ACEL device. As 
shown in Fig. 3, the structure, morphology, and chemical composition of 
MXene are investigated by TEM, SEM, XRD, and XPS. The TEM image 
and selected area electron diffraction (SAED) patterns in Fig. 3a depicts 
the typical morphology of MXene nanosheet and high degree of crys-
tallinity. The cross-section SEM image of the layered structure of 
vacuum-filtrated MXene nanosheets is clearly shown in Fig. 3b. The XRD 
patterns of MXene nanosheet is presented in Fig. 3c, with a represen-
tative strong (002) peak at 6.7◦, corresponding to the D-spacing of 
1.3 nm. The surface chemistry of MXene nanosheets was investigated by 
XPS. The full XPS survey and high-resolution spectra of Ti 2p and C1s are 
shown in Fig. 3d− f. The C1s spectra are deconvoluted into three 
Gaussian peaks at 284.6, 287.6, and 281.9 eV, corresponding to the 
binding energy of C− C/C˭C, C− O, and Ti− C, respectively. 

The performance of ACEL devices with various MXene ratios (from 
0.00% to 1.00%) are presented in Fig. 4. The corresponding optical 
image shown in Fig. 4d evidences an obvious enhancement in the 
brightness compared to the ACEL device without MXene under same 
driving voltage. To evaluate the enhancement, the brightness is illus-
trated using a 3D contour in Fig. 4a. The EL spectra and optical images of 
ACEL devices with various MXene loading ratio and driving voltage 
were also collected and illustrated in Figs. S2–S3. The EL intensities are 
extracted as a matrix versus the MXene loading ratio and driving 
voltage, as shown in Fig. 4b and e. Obviously, the ACEL device with 
0.25 wt% MXene loading under 250 V delivers the best performance. 

Fig. 4. Performance of ACEL devices with various MXene loadings. Electroluminescence intensities (a) and the corresponding optical images (d) of ACEL devices 
with various MXene loadings under 150 V. The EL intensities of ACEL devices with various MXene loadings under indifferent voltage (b, e) and the enhancement of 
ACEL devices compared with the one without MXene loading under 100 V (c) and the normalized enhancements of ACEL devices with various MXene loadings under 
the same voltages (f). Scale bar: 1 cm. 
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The enhancements and normalized enhancements of EL intensities are 
shown in Fig. 4c and f. Compared with the original station that device 
without MXene loading under 100 V, the best enhancement reaches 
2000% by the device with 0.25 wt% MXene loading under 250 V. The 
normalized enhancements were the enhancement of ACEL devices with 
various MXene loading under the same voltages. The best one possesses 
about 500% normalized enhancement. 

In order to further understand the enhancement mechanism of ACEL 
via incorporating MXene in the PDMS matrix, a finite element analysis 
simulation (COMSOL Multiphysics) have been utilized to study the 
electric potential and field strength distribution. As shown in Fig. 5b and 
d, the simulated models of the same dimension are constructed ac-
cording to the cross-section SEM image shown in Fig. 5a. The driving 
voltage for simulation is set as 100 V, and the relative permittivity of 9.6 
and 2.75 for Zn:Cu powders and PDMS matrix are adopted, respectively. 

The electric potential and electric field intensity distribution depends on 
the morphologies and spatial distribution of Zn:Cu powders in PDMS 
matrix. The highest electric field intensity (107 V/m) is achieved at the 
protruding cape of ZnS:Cu powders. As an essential factor of ACEL de-
vice, the relative permittivity of the PDMS matrix with various MXene 
loadings are measured and shown in Fig. 5c. The detailed capacitances 
and relative permittivity are collected in Fig. S4 and Table S1. The 
relative permittivity increases with the MXene loading (from 0 to 
0.25 wt%); further increase in the MXene loading leads to a drop in 
relative permittivity, indicating a percolation limit for the maximum 
MXene loading ratio [39]. The corresponding electric field distributions 
of ACEL with various relative permittivity are simulated and demon-
strated in the movie S2. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2021.106077. 

Fig. 5. Finite element simulation of ACEL devices under various MXene loadings. (a) Cross-section SEM image of ACEL device. Scale bar: 50 µm. (b, d) The simulated 
electric potential and field strength distribution of ACEL without MXene loading under 150 V. (c) The relative permittivity of PDMS matrix with various 
MXene loading. 

Fig. 6. Demonstration of transparent self-powered ACEL device array enhanced with MXene loading. (a and b) Schematic illustration and optical images of patterned 
ACEL device. (c) the EL intensity of AECL device with ‘ZZU’ pattern array. (d) the process of ‘Z′ pattern array. Scale bar: 2 cm. 
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For practical applications, the patterned self-powered ACEL device 
with MXene loading is obtained and demonstrated. As illustrated in  
Fig. 6a, the patterned ACEL consists of the two crossed strip electrodes 
and an emission layer. The excellent flexibility and transparency of 
patterned ACEL device are evidenced in Fig. 6b. The transmittances of 
ACEL device with various MXene loadings are provided in Fig. S5. For 
the patterned self-powered ACELs with MXene loading, each pattern is 
powered and lighted up by a simple TENG, the corresponding optical 
images are recorded and illustrated in Figs. S6 and 6d. The pattern of 
‘ZZU’ registered by the ACEL is illustrated in Fig. 6c. Each pixel of the 
pattern conveys the similar brightness, which is beneficial for devel-
oping self-powered ACEL displays and illumination for future applica-
tions in human–machine interactions, artificial electronic skins, and 
wearable equipment. In this work, the patterned display array is 4 × 4 
pixels. And the dimensions each pixel is 4 × 4 mm2. The resolution of 
the self-powered ACEL device array could be further improved by 
lithography to obtain patterned SWCNTs electrodes and patterned 
emissive layer [45,46]. 

4. Conclusion 

MXene-enhanced self-powered ACEL devices have been fabricated 
for patterned displays. By introducing 0.25 wt% of MXene into the 
PDMS matrix, the EL intensity of the ACEL device can be enhanced by 
500% while retains excellent transparency. The fundamental enhancing 
mechanism is elaborated by the finite element analysis. The ACEL device 
could be powered by TENG for patterned displays and illumination, 
which will expand a novel approach to self-powered communication in 
IoT. 
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