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Abstract
Infectious diseases are spreading rapidly with the flow of the world’s population, and the
prevention of epidemic diseases is particularly important for public and personal health.
Therefore, there is an urgent need to develop a simple, efficient and non-toxic method to control
the spread of bacteria and viruses. The newly developed triboelectric nanogenerator (TENG) can
generate a high voltage, which inhibits bacterial reproduction. However, the output performance
is the main factor limiting real-world applications of TENGs. Herein, we report a soft-contact
fiber-structure TENG to avoid insufficient friction states and to improve the output, especially at
a high rotation speed. Rabbit hair, carbon nanotubes, polyvinylidene difluoride film and paper all
contain fiber structures that are used to guarantee soft contact between the friction layers and
improve the contact state and abrasion problem. Compared with a direct-contact triboelectric
nanogenerator, the outputs of this soft-contact fiber-structure TENG are improved by about
350%. Meanwhile, the open-circuit voltage can be enhanced to 3440 V, which solves the
matching problems when driving high-voltage devices. A TENG-driven ultraviolet sterilization
system is then developed. The bactericidal rate of this sterilization system can reach 91%, which
significantly reduces the risk of disease spread. This work improves a forward-looking strategy
to improve the output and service life of the TENG. It also expands the applications of self-
powered TENG sterilization systems.

Supplementary material for this article is available online

Keywords: triboelectric nanogenerator, fiber-structure materials, high voltage output,
sterilization

(Some figures may appear in colour only in the online journal)

1. Introduction

In the long history of humankind, infectious diseases caused
by bacteria and viruses have brought many disasters [1, 2].
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Even today, when science and medical treatment are rela-
tively developed, infectious diseases are still one of our most
threatening challenges [3–7]. Bacteria and viruses can easily
spread from person to person through the air, for example
SARS [8–10], avian influenza [11, 12], measles [13], epi-
demic cerebrospinal meningitis [14], pulmonary tuberculosis
[15, 16], COVID-19 [17], etc. Frequent disinfection of the
environment is one of the effective means to avoid the spread
of diseases and ensure health and safety. At present, ster-
ilization and disinfection of the family environment mainly
include physical disinfection and chemical disinfection. Toxic
chemicals used for chemical disinfection, such as peracetic
acid and sodium hypochlorite, are generally corrosive and
easily leave residues that are not only harmful to people’s
health but also the ecological environment [18, 19]. Ultra-
violet disinfection has become an increasingly popular phy-
sical disinfection technology due to its advantages of safety,
efficiency and no secondary pollution. However, the
dependence on a stable power grid system and a complex
boost circuit severely limits Ar–Hg lamps. It is difficult to
apply ultraviolet sterilization systems in remote areas and
outdoor environments without a power supply. Therefore, it is
necessary to develop an independent and environmentally
friendly ultraviolet light source for disinfection, which is
independent of the power grid and can be used in households
and other environments to ensure human health and safety.

A triboelectric nanogenerator (TENG), based on a cou-
pling of the triboelectric effect and electrostatic induction, can
effectively convert various environmental mechanical move-
ments into electrical energy [20–22]. Recently, this new
power technology has been developed for many purposes,
such as micro power supplies [23–26], blue energy [27–31]
and self-powered sensors [32–36], showing great significance
and prospects for application in many fields. TENGs not only
have the advantages of low-frequency mechanical energy
trapping, high efficiency and low cost, but they have also
attracted more and more attention for safe high-voltage
applications due to their unique high-voltage and low-current
output characteristics [37–39]. In recent years, more and more
TENG research has focused on sterilization, but most are only
applied to small-scale water sterilization and there are few
reports that they can be applied in various environments for
large-scale sterilization [40–42]. The output performance of a
TENG is one of the most important indicators. Among
TENGs with various structures, a rotary triboelectric nano-
generator (R-TENG) has the advantages of high efficiency
and continuous output compared with other structures [43].
Researchers have also found that increasing the area of the
contact surface is one of the effective means to improve the
output of a TENG [44]. However, mechanical abrasion and
heat of the friction layer will reduce the output performance
of the device and lead to poor mechanical stability during a
long period of work. The service life of a TENG is seriously
affected, and new devices need to be replaced frequently to
maintain good output efficiency. In addition, the macro-
molecular polymers often used as friction layers will also
have certain effects on the environment. To reduce the
mechanical abrasion between friction layers and improve the

service life of a R-TENG, non-contact triboelectric nano-
generators (NC-TENG) have been invented [45–49]. In NC-
TENGs, abrasion is avoided but the charge on the dielectric
surface will gradually dissipate over time due to lack of a
timely supplement. The rate of dissipation depends on the
ability of the dielectric material to retain surface charges. The
reduction of surface charge density will have a huge impact
on the output performance. For a TENG with contact mode
and non-contact mode switching under specific conditions,
the abrasion between media also cannot be avoided, and
stability of the equipment and output will be reduced during
working mode switching. Given this, it is very necessary to
develop a long-life, high-performance, stable-output TENG as
a high-voltage power supply in practical applications.

This paper reports a soft-contact, high-output, high-sta-
bility R-TENG based on fibrous materials, its structural
designs and circuit management. Degradable materials with a
fiber structure, including rabbit hair, paper, and carbon
nanotubes (CNTs), are introduced into the TENG device, and
the loose and porous fiber structures are more conducive to
the adhesion of bacteria, which will significantly enhance the
degradability of materials and reduce the environmental pol-
lution. Compared with materials without surface structure,
fiber-structured materials with a larger surface area can bring
higher output performance to TENG. In addition, a soft-
contact design is used to guarantee a sufficient friction state
and high outputs in high rotation speed, and it also avoids the
abrasion problem and thus enlarges TENG’s lifetime. Com-
pared with the direct-contact TENG, the outputs of this soft-
contact fiber-structure TENG are improved by at least 350%
at high speed. With the help of circuit management, 3440 V
DC voltage can be easily obtained, and the matching problem
with commercial electron devices is also solved. Finally, a
TENG-driven ultraviolet sterilization system is developed for
home, school, and other environments for daily disinfection
and sterilization. The bactericidal rate of this sterilization
system can reach 91%, which significantly reduces the risk of
disease breeding. This work provides a useful idea for the
structural design of a TENG, and it opens up a new way for
infectious disease control and a self-powered sterilization
system, especially in isolated or remote areas.

2. Results and discussion

2.1. Device structure and schematic of the soft-contact
R-TENG

Figure 1(a) presents the hierarchical structure of a TENG,
which consists of two parts, a rotor and a stator. The rotor part
is based on an acrylic substrate. Polyvinylidene difluoride
(PVDF) is attached to the acrylic substrate via electrospinning
as the first triboelectric dielectric. Then, the electrospun
PVDF film is divided into six equal-sized sectors by laser
cutting. Half of the fan-shaped PVDF films are removed and
the remaining counterparts alternately distributed on the
acrylic surface. The blank parts are filled with paper as the
second triboelectric medium. A rotor with PVDF and paper
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alternately attached to the acrylic substrate is obtained. For
the stator part, an acrylic plate is used as the base as for the
rotor part. The Kapton tape, which is glued to the substrate, is
laser cut with an accurate mask pattern. Then the excess is
removed, leaving a mask on the acrylic sheet. The CNT
solution is spin coated on the substrate with a mask as the
electrode material. After the slurry has dried, the mask is
removed. Two electrodes with regular shapes were obtained.
The electrodes associated internally are defined as electrode 1.

The counterpart of the external connection is called electrode
2. As the third kind of friction dielectric, rabbit hair is used to
fill in the electrode gap; its triboelectric property between
paper and PVDF can effectively supplement the charge for
the other two friction media in time. The TENG’s soft-contact
and sufficient friction are realized by soft and fluffy rabbit
hair. Figures 1(b) and (c) show the details of the rotor and
stator preparation process. Figure 1(d) presents a
micrograph of rabbit hair. A higher magnification image of

Figure 1. Structure and schematic of a soft-contact R-TENG. (a) Hierarchical structure diagram of the soft-contact R-TENG. (b) The
manufacturing process of the rotor. (c) The manufacturing process of the stator. (d) Photographs of rabbit hair. The scale bar is 800 μm. (e)
SEM image of the rabbit hair scale structure. The scale bar is 20 μm. (f), (g) SEM image of CNTs and enlarged view of a local section. Scale
bars are 2 μm and 800 nm. (h) SEM image of PVDF electrospinning fiber film. The scale bar is 2 μm. (i) SEM images of the paper surface.
The scale bar is 40 μm.
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rabbit hair shown in figure 1(e), in which the scale structure of
the hair can be seen. The scanning electron microscope
(SEM) image of CNTs, which comprise the electrode mat-
erial, is shown in figure 1(f). The tubular structure is visible in
figure 1(g) with larger magnification. A SEM micrograph of
PVDF electrospinning fiber film is shown in figure 1(h); the
fiber thickness is about 1 μm. The microscopic image of the
paper is shown in figure 1(i). It can be seen in the figure that
the fiber thickness varies greatly, the edge is relatively rough
and there are many small particles on the surface. This also
reflects the roughness of the paper surface from the micro-
structure. Whether rabbit hair, PVDF film or paper, the fric-
tion area is effectively increased by their fiber structure to
ensure high-performance output of the TENG. At the same
time, the loose and porous fiber structure of these degradable
materials is more conducive to the adhesion of bacteria on the
surface of materials, thus accelerating the degradability of
materials.

2.2. Working mechanism of the TENG

The abrasion of friction materials is still a serious challenge
for the practical application of long-term energy collection.
The non-contact TENG can effectively solve the problem of
abrasion, but in the long-term non-contact friction in the
medium will lead to charge dissipation, which will seriously
reduce the output power of the TENG. To improve
mechanical durability and output efficiency of the TENG, a
soft-contact triboelectric nanogenerator based on rabbit hair
was designed. Because the fluffy rabbit hair has a certain
elasticity and softness, the friction layer will not contact the
electrode and be abraded. In addition, the frictional electrical
properties of the three friction media can be determined by
measuring the surface potential after mutual contact. PVDF is
more likely to obtain negative charges and paper is more
likely to obtain positive charges. The order from positive to
negative frictional properties is paper, rabbit hair and PVDF
film. Therefore, the rabbit hair always acts as a charge transfer
station, because its charge affinity is between that of PVDF
and paper. When the soft-contact TENG starts to work, the
hair receives electrons from the paper and transfers them to
the PVDF with stronger electronegativity when it contacts the
PVDF. At the same time, the stronger electronegativity will
also deprive the hair of some electrons until the frictional
charge density of paper and PVDF is saturated. A comparison
of friction electronegativity and output between rabbit hair,
paper and PVDF is shown in figure S1. A cross-section dia-
gram of the working state is shown in figure 2(a). PVDF will
have a negative charge due to its triboelectricity; on the
contrary, the paper will have a positive charge. The corresp-
onding two electrode parts induce the same number of
opposite charges. With the rotation of the rotor part, the
corresponding positions of the electrode and the two media on
the rotor change, and the induced positive charge on electrode
1 decreases and flows to electrode 2. The current direction is
from electrode 1 to electrode 2. As the charge affinity of the
hair is between that of the paper and PVDF, the charge loss of
the paper will be replenished when it contacts the hair, and it

will return to the state of charge saturation. Figures 2(b) and
(c) shows this process. When electrode 1 corresponds to the
position of the paper and electrode 2 corresponds to the
position of the PVDF film (i.e. Figure 2(f)), half of a current
cycle ends. The continuous rotation of the rotor makes the
current between the two electrodes opposite to the preceding
direction. At the same time, the negatively charged rabbit hair
rubbing against the paper is in contact with the PVDF med-
ium. If the charge on PVDF film is dissipated, then the
negative charge carried by rabbit hair will be added to PVDF
to maintain its original charge density. This process is shown
in figure 2(e). The rotor continues to rotate until it returns
from the position in figure 2(d) to the original position
(figure 2(a)), and one current cycle is completed.

The sketches and finite element simulation by COMSOL
are utilized to demonstrate the open-circuit voltage, as shown
in figures 2(g)–(j). In the charge saturation state of the friction
layer, electrode 1 is aligned with the position of the PVDF
and electrode 2 is aligned with the position of the paper
(figure 2(g)), but no charge transfer occurs in the open-circuit
state. At this time, the potential difference between electrode
1 and electrode 2 reaches its maximum. The maximum
positive voltage of the electrode can reach about +1500 V
and the negative voltage about −1500 V. The simulation
results are consistent with the experimental results. The
potential difference between the two electrodes will gradually
decrease with continuous rotation until the area of each
electrode opposite the two friction media is equal (figure 2(h))
and the potential difference between the electrodes is mini-
mum. At this time, the voltage potential difference between
the two electrodes is close to 0. The constant displacement of
the rotor will break the balance between the two electrodes at
this moment, and the left electrode will start to display a
negative voltage while the right electrode will start to display
a positive voltage. Until the corresponding positions of
electrode 1 and electrode 2 are exchanged, the potential dif-
ference between the two electrodes again reaches the max-
imum, but electrode 1 has a negative voltage at this time and
electrode 2 a positive voltage. At this time, half of the voltage
cycle is completed. With the rotation of the rotor, the potential
difference between the two electrodes again decreases to 0
(figure 2(i)). Then the positive and negative voltages of the
two electrodes are exchanged again until they return to their
original positions (figure 2(g)). The whole process represents
a complete voltage cycle.

2.3. Performance comparison of the TENG

Based on the above theoretical analysis and finite element
simulation results, we measured the current, voltage and
charge transfer performance of soft-contact TENG devices,
and compared the differences in performance between a
direct-contact TENG and soft-contact TENG at different
speeds.

The radius of the soft-contact TENG used in the
experiment is 9 cm. The gap angle between electrodes is an
important structural parameter that affects output perfor-
mance. In our work, we found that a gap angle of 2°–10° can
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make the device output a higher voltage, so the gap angle of
the device is set to 10°. [50] The TENG is driven by a pro-
grammable rotary motor to obtain an accurate speed. The
short-circuit current (Isc) of a high-performance soft-contact
TENG has a steady AC signal at an amplitude of 12 μA. A
partial magnified view is shown in figure 3(d). The signal
characteristics of the sine wave sample are consistent with the
previous theoretical analysis (figures 2(a)–(g)). The exper-
imental voltage of the TENG is measured by the voltage
divider method, and two resistors with resistance values of
100M (R1) and 100 G (R2) are connected in series in the

external circuit. The open-circuit voltage (Voc) signal is
shown in figure 3(b). The peak voltage of the AC signal can
be seen to be as high as 1200 V. When compared with soft-
contact and non-contact TENGs in other works (see figure
S3), the output voltage of our TENG is much higher. This
indicates that the performance of devices constructed with
full-fiber structural materials can be improved [49, 51–53].
The experimental results are close to the previous simulation
results (figures 2(g)–(j)). The amplification result for the
open-circuit voltage is shown in figure 3(e). The waveform of
the sine wave sample is similar to the short-circuit current.

Figure 2. (a)–(f) Working mechanism of the soft-contact R-TENG. (g)–(j) Simulated potential distribution of two electrodes of the TENG
under different working processes.
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The peak value of the transferred charge (Qsc) is about 250 nC
at the same rotational speed. An enlarged plot is shown in
figure 3(f). All output signals are continuous, stable sinusoidal
waveforms. This can be verified with the previous theoretical
analysis.

These stable signals indicate that soft contact based on
fiber materials can effectively guarantee sufficient friction,

thus ensuring the excellent output performance of the TENG.
On the other hand, the soft contact also avoids up and down
vibration of the TENG rotor during rotation so it has good
stability. The impact of such vibration will be more obvious
in high-speed rotation. Compared with a direct-contact
TENG, the soft-contact TENG has the advantages of long
service life and stable output performance. Therefore, we

Figure 3. Performance comparison of a soft-contact R-TENG. (a), (d) Short-circuit current of the high-performance soft-contact TENG (a)
and local enlarged drawing (d). (b), (e) Open circuit voltage of the high-performance soft-contact TENG (b) and local enlarged drawing (e).
(c), (f) Transferred charge of the high-performance soft-contact TENG (c) and local enlarged drawing (f). (g) Current density of direct-contact
TENG with different rotation speeds. (h) Current density of the high-performance soft-contact TENG with different rotation speeds.
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compared the changes in output performance of the two
TENGs at different speeds. Figure 3(h) shows the output
signal of a contact TENG with rotating speeds from 100 rpm
to 500 rpm. As shown in the figure, when the speed is
100 rpm, the peak value and frequency of the output signal
are very low. The output current reaches a maximum at
300 rpm, and then the speed does not increase the output but
only the signal frequency. According to the formula for cur-
rent definition (1)

=i
dQ

dt
1( )

the current is inversely proportional to the length of the
charge transfer period. The low speed means that it takes a
long time for the two dielectrics of the rotor to exchange
corresponding positions with the two electrodes of the stator,
so the charge transfer cycle is long and the output is low. The
higher the rotational speed, the shorter the charge transfer
period. At high speeds, although the charge transfer cycle is
shortened, the instability between the rotor and stator still
causes a partial decrease in the amount of transferred charge.
Therefore, even if the speed increases after 300 rpm, the
output current will not increase. The amount of transferred
charge corresponding to different rotation speeds of the soft-
contact TENG (figure S2) clearly illustrates this problem.

The friction materials used for a direct-contact TENG are
PVDF and paper, and the specific size parameters are con-
sistent with those of the soft-contact TENG. The counterpart
signals of a direct contacting TENG are shown in figure 3(g).
Similar to the output signal of the soft-contact TENG, at
100 rpm the output signal is low and reaches a maximum at
300 rpm. However, further increase in the rotation speed will
lead to a reduction in the signal of the direct-contact TENG,
so that the output signal at 500 rpm is less than one-fifth of the
maximum output value. This is due to the increased vibration
and insufficient contact between the contact surfaces of the
direct-contact TENG at high rotation speeds. On the one
hand, the TENG’s soft contact based on fiber materials can
effectively guarantee a sufficiency of friction, thus ensuring
an excellent output performance. On the other hand, the soft
contact also avoids vibration of the R-TENG rotor during
high-speed rotation to ensure its stability. We also conducted
durability tests on the soft-contact TENG. The results are
shown in figure S5, and after more than 100 000 cycles there
was no significant change in TENG output, which could still
exceed 10 μA. The TENG worked for 2 h a day and the
output changes for 7 days were continuously measured. The
results showed that after 7 days the output was still close to 10
μA. Despite a slight decrease in short-circuit current, the
performance output overall remains relatively stable. There-
fore, the device has good performance and long-term
sustainability.

2.4. High-voltage output of the TENG

The ternary dielectric triboelectric nanogenerator based on
fiber structure, which has the advantage of high stability,
shows excellent performance compared with previous reports

[54–56]. TENGs have great potential as high-voltage power
supplies based on high-voltage output. To broaden the range
of applications of TENGs and change the characteristics of
the AC output, appropriate circuit management needs to be
used to modulate the output signal. The signal processed
through a bridge rectifier, which is the most commonly used
circuit for converting AC to DC, is shown in figure 4(a). It
can be seen from the figure that the output signal only has a
forward voltage with a peak value of about 1200 V. In
addition, a voltage multiplication circuit containing diodes
and capacitors was used, as shown in figure 4(b). The specific
working principle and diagram of the management circuit are
shown in the Supporting Information (figure S4). When the
upper two terminals in the figure are output terminals, the
output voltage will be twice the original TENG output volt-
age. Similarly, the tripled voltage will be output at the lower
terminals. The double output signal processed by the circuit
management system is shown in figure 4(c). It can be seen
that the output peak value of the signal is about 2424 V after
rectification and voltage doubling. An enlarged view of the
peak voltage details is shown in figure S3. Similarly,
figure 4(d) shows a test signal three times the original TENG
voltage. In order to analyze the output stability, we calculated
the crest factor under different conditions. The specific calc-
ulation process and results are shown in figure S7 and table
S2. According to the results, the crest factor of the signal
without any processing is 1.41, and the crest factor of the
signal with a triple voltage multiplier circuit decreases to 1.31.
The DC signal after voltage doubling rectification can con-
tinuously light up 2200 LED bulbs, as shown in figure S8 and
supplementary video 3. There is no noticeable flickering of
light or dark on the LED, indicating that the output of the
soft-contact TENG after circuit management is already rela-
tively close to a constant current. The continuous and stable
high-voltage output shows that the TENG with circuit man-
agement is competent enough to be used as a high-voltage
power supply.

To verify the high-voltage output characteristics of the
device, we used it to conduct air breakdown with a break-
down device made of a glass tube and two tungsten metal
needles and recorded the process with a high-speed camera.
Figures 4(e)–(g) show the transient state before and after air
breakdown. The air gap between the needle tips in the figure
is about 1.5 mm. According to Paschen’s law describing air
breakdown voltage, a voltage of about 3440 V will cause tip
discharge. Paschen’s law is shown in formula (2)

g

=

- +

V
Bpd

Apdln ln ln 1
1

2b

se
( )

( )

⎜ ⎟⎜ ⎟
⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

where d is the gap distance, p is the operating pressure, A and
B are constants determined by gas composition and γse is the
secondary electron emission coefficient (the parameters used
in this equation are shown in table S1 in the Supporting
Information). A magnified view of the moment when air
breakdown occurs at the beginning is shown in figure 4(f);
then a bright electric spark can be seen. The complete
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discharge process captured by the high-speed camera is
shown in video 1 in the Supporting Information. The break-
down experiment proves that the output voltage of the TENG
after circuit management can reach about 3440 V, which is
consistent with the data measured in our experiment in
figure 4(d).

2.5. Self-powered UV sterilization system

Considering that many infectious diseases can easily spread in
air, it is very important to develop an environmentally
friendly method to kill bacteria. Ultraviolet sterilization has
long been proven to be an efficient physical sterilization
method. It mainly acts on the DNA or RNA of

Figure 4.Output voltage improvement of the soft-contact R-TENG. (a) Electric circuit diagram of the voltage multiplier circuit for converting
AC to DC with high voltage. (b) DC open-circuit voltage of the bridge rectifier. (c), (d) Output voltage with a voltage-doubler rectifier circuit
(c) and a voltage-tripler rectifier circuit (d). (e), (f) Breakdown process caused by high voltage.
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microorganisms, destroying the genetic material structure and
making it lose the function of reproduction and self-replica-
tion, thus achieving the aim of sterilization and disinfection. It
has the advantages of simplicity, convenience, broad-spec-
trum efficiency, no secondary pollution, etc. An ultraviolet
lamp made of a quartz glass tube is the most widely used and
simple tool in daily ultraviolet sterilization. But starting the
lamp requires high-voltage excitation, and the domestic
electricity supply needs complex circuit conversion to drive it.
Therefore, the portability of the lamp is greatly reduced and
its use in outdoor or remote areas with an unreliable and
inconvenient power supply is also limited. Due to the unique
advantages of a TENG’s high voltage and low current, the
ultraviolet lamp directly driven by a TENG can be used for air
sterilization. A demonstration of this application is illustrated
in figure 5(a). The working principle of this self-powered
ultraviolet sterilization system is shown in figure 5(b). The
output of the TENG is driven by the energy management
system shown in figure 4 to operate the quartz tube ultraviolet
lamp. After the effects of both ultraviolet radiation and ozone,
the bacterial content in the air will be reduced. To verify the
universal bactericidal effect of the self-powered sterilization
system, Escherichia coli was irradiated by the self-driving
ultraviolet system within 0–40 min. The disinfection results
are shown in figures 5(c) and (d). As shown, 793 colonies
grew on the surface of the culture dish without irradiation
after constant-temperature culturing for 24 h, and the number
of colonies was reduced to less half after 20 min UV irra-
diation. After 40 min of treatment, there were very few viable
bacteria left on the surface of the Petri dish, leaving only 69
colonies. The bactericidal rate reached 91.3%. Compared with
the commonly used TENG-driven high-voltage breakdown
sterilization method in existing reports, the use of TENG-
driven ultraviolet tubes for disinfection makes the system
more convenient [57]. The sterilization range is not limited to
small-scale water sterilization and can be used for sterilization
in households and other environments [58]. The statistical
results for sterilization are shown in figure 5(g). The contrast
of the ultraviolet lamp before and after lighting is shown in
figures 5(f) and (g). More detailed video materials can be seen
in the supplementary material video 2. It is worth noting that
the main luminous spectral lines of the illuminated ultraviolet
germicidal lamp are 254 nm and 185 nm. Ultraviolet light at
254 nm kills bacteria by irradiating their DNA, while 185 nm
ultraviolet light can change O2 in the air into O3 (ozone).
Ozone has a strong oxidation effect and can effectively kill
bacteria. The dispersion of ozone can just make up for the
shortcomings of ultraviolet light that only travels in a straight
line and disinfects dead corners. Figure 5(h) shows that the
ozone generated by the self-powered ultraviolet sterilization
system will reach a concentration of 7 ppm when it works for
about 10 min. It then reaches the required concentration for
air disinfection. Therefore, under the dual action of ultraviolet
and ozone, the sterilization system driven by a TENG can
achieve a sterilization rate of 91.3% after 40 min of treatment.
Compared with commonly used electric breakdown ster-
ilization methods, ultraviolet sterilization is more convenient
and has lower usage requirements.

3. Conclusions

In this paper we have developed a soft-contact fiber-structure
TENG for driving Ar–Hg UV lamps with mobile disinfection
and infectious disease control systems. Degradable and
fiberous rabbit hair, paper and PVDF are used to build the
friction medium of the soft-contact TENG to avoid insuffi-
cient friction states and to improve the output. Compared with
a direct-contact TENG, the output performance of the soft-
contact TENG at high speed (500 rpm) is improved by at least
350%, and the equipment operates stably. In addition, the
abrasion of the dielectric surface is effectively reduced, and
the service life of the TENG is greatly improved. Through the
strategy of special circuit management, the TENG has
achieved a 3440 V open-circuit voltage output. Finally, a
TENG-driven ultraviolet sterilization system is used for
indoor air environments to prevent bacterial propagation,
which expands the application scope of TENG self-powered
equipment in the prevention of infectious diseases.

4. Experimental section

4.1. Material

CNT solution (9–10 wt%), N,N-dimethylformamide (DMF)
and acetone were purchased from Shanghai Aladdin Bio-
chemical Technology Co., Ltd (Shanghai, China). PVDF was
purchased from Shanghai Macklin Biochemical Co., Ltd
(Shanghai, China). Paper, rabbit hair and acrylic were pur-
chased from local stores.

4.2. Fabrication of the electrospinning PVDF film

One gram of PVDF was dispersed in 2 ml of acetone and 2 ml
of DMF. The resultant solution was stirred for 8 h. With a
voltage of 15 kV, PVDF fibers were spun on the acrylic
substrate. The spinning environment temperature was 25 °C
and the humidity 20%. The spraying speed was maintained at
1 ml h−1 for 5 h. The distance between the acrylic base and
the needle was 15 cm.

4.3. Fabrication of the CNTs electrodes

The diameter of the entire electrode was 180 mm. It com-
prises two parts: the inner electrode, defined as electrode 1,
and the outer electrode, defined as electrode 2. The distance
between the electrodes is 10°. First, the Kapton tape attached
to the acrylic substrate was cut into the shape of electrode 1,
electrode 2 and the gap using a laser cutter. The mask is the
part remaining after removing the electrode shape. The radius
of the innermost circle of the mask is 8 mm and that of the
outermost circle 90 mm; the width of the arc part is 5 mm.
Then the CNT solution was spin coated on the entire acrylic
plate at 1000 rpm. The spin-coated electrode was kept in a
333 K oven for 2 h to cure. Finally, the mask was removed to
leave the electrode part.
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4.4. Fabrication of the soft-contact R-TENG

For the rotor part, the prepared PVDF spinning film was cut
into six equal fan-shaped pieces using a laser cutter. The angle
of every sector is 60°. Alternate sectors were removed, leaving
three blank areas and three PVDF sectors arranged alternately.
Then the paper was attached to the acrylic substrate in the blank

area. For the stator part, the fan-shaped gaps between the
electrodes were filled with rabbit hair.

4.5. Measurement

The surface morphology of rabbit hair, paper, PVDF spinning
film and CNTs was characterized by scanning electron

Figure 5. Self-powered UV sterilization system. (a) A proposed conceptual application of the TENG used for self-powered UV sterilization in
an indoor environment. (b) Circuit schematic of disinfection with an Ar–Hg ultraviolet lamp driven by a TENG. (c)–(e) Photographs of
Escherichia coli colonies under irradiation times of 0 min, 20 min and 40 min. The scale bar is 2 cm. (e), (f) Photograph of the Ar–Hg
ultraviolet lamp that is directly powered by the TENG before and after luminescence, respectively. (g) Statistical results of sterilization. (h)
The ozone concentration generated by the self-driven ultraviolet sterilization system.
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microscopy (SEM; Carl Zeiss AG Gemini300). An electrometer
(Keithley 6514) was used to test the load voltage by the series
resistance divider method. The current was measured using a
low-noise current preamplifier (Stanford Research System,
model SR570). A motor (PERFECT, 5RK120RGU-CF) was
used to drive the rotor of the high-performance TENG. The
ozone concentration was measured with an ozone (O3) trans-
mitter (Shandong RENZHICEKONG Co., Ltd).
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