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Human skin possessing abundant thermal and mechanical
receptors can distinctively perceive temperature and various
mechanical deformations [1]. Mimicking of skin has been emerging
with the breakthrough in human–machine interfaces, automation,
smart robotics, and Internet of Things, and tactile sensors with
onefold sensing capability are gradually inadequate to meet the
complex application scenarios. Therefore, multimodal electronic
skin (e-skin) mimicking and reproducing the properties of human
skin can simultaneously monitor various external stimuli (pres-
sure, temperature, strain, etc.), holding great significance in the
next generation of artificial intelligent products [2,3]. Much efforts
have been dedicated to the realization of multifunctional sensors
by integrating different sensing modules together [4,5], or utilizing
a single sensing unit without decoupling [6]. Both of these two
methods have their own limitations. First, integrating multi-
modules into a device would suffer from the structural complexity,
low spatial resolution, and complicated technological process.
Multi-sensing in a single unit could be a great approach to avail-
ably evade aforementioned obstacles, but still encounters inevita-
ble drawbacks including signal interference and accuracy level of
measurement. Alternatively, inherent material property indepen-
dent from variation in dimension can be an access to differentiat-
ing temperature sensing from other stimuli evaluated by extrinsic
values like resistance or capacitance. Some endeavors have been
made to decouple temperature and other mechanical deformation
using inherent variables like thermoelectric [7] and pyroelectric
[8]. Relied on this concept, simultaneous sensing for temperature
and other stimulus without mutual interference in a single unit
or one-structure could be a superior option. However, the thermo-
electric and pyroelectric effects are mainly resided in some rigid or
flexible film materials, thus, the lack of the stretchability within
such tactile devices impedes their application scopes, especially
in soft robots, wearable devices and stretchable electronics.

Recently, Zhenan Bao and her colleagues [9] have demonstrated
a deformable multimodal electronic skin based on ion relaxation
dynamics that can distinguish spatial profiles of temperature and
strain simultaneously without signal interference in a single unit
(Fig. 1a). This soft haptic sensor is composed of an ion conductor
(1-ethyl-3-methylimidazoliumbis(trifluoromethylsulfonyl)imide
(EMIMTFSI)) sandwiched by top and bottom stretchable elec-
trodes. The Bode plot is utilized to characterize the electrical prop-
erties of ionic conductor, dominated by ion migration and
polarization at low frequency and high frequency severally. The
resistance (R = d/rA) and capacitance (C=єA/d) of the ion conductor
are approximately equal to the real impedance and the imaginary
impedance, where d, A, r, and є are the thickness, area, ion conduc-
tivity, and dielectric constant, respectively. Under external
mechanical stretching, the overall impedance plot of the sensor
parallelly shifts down with resistance and capacitance going up
and down, respectively (Fig. 1b(i)). However, the charge relaxation
time (s=є/r) depended on the intrinsic variables remains constant
because the dimensional parameters can offset each other. When
heating the sensor, the resistance reduces and the charge relax-
ation frequency (s–1) becomes higher (Fig. 1b(ii)), whereas the nor-
malized capacitance (C/C0) can eliminate the influence caused by
temperature effect of the dielectric constant. Therefore, the relax-
ation time (s) can act as a strain-insensitive intrinsic variable for
temperature sensing, while the normalized capacitance can serve
as a temperature-insensitive extrinsic parameter for strain sensing.
Furthermore, under every tensile strain value (e = 0, 30%, 50%), the
temperature-sensitive responsive curves perfectly accord with
each other (Fig. 1c(i)). Similarly, the strain-sensitive responsive
curves are also consistent under different temperature (T = 20,
30, 40, 50 �C) (Fig. 1c(ii)), experimentally demonstrating a decou-
pling for temperature and strain sensing in a single unit.

Therefore, this soft tactile sensor can perceive the temperature
and strain simultaneously without signal interference. A multi-
modal tactile sensor array of 10 � 10 is fabricated and adhered to
an artificial hand to imitate the perception capability of human skin
(Fig. 1d). As displayed in Fig. 1e, when applying a weak and strong
unidirectional shear force to the e-skin, the spatial amplitude and
location profiles of temperature and strain can be precisely distin-
guished. Moreover, the strain profile exhibits more prominent in
the tensile region when applying a higher shear force, whereas the
temperature profile remains almost unchanged in the contact point.
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Fig. 1. (Color online) (a) Strain and temperature profiles on real skin when the mechanical and thermal stimuli are applied simultaneously. (b) Schematic Bode plot of ion
conductor by stretching (i) and heating (ii). (c) Variations of lns with respect to T�1 at different tensile strains (i) and changes in C/C0 as a function of stretched strains (e) at
different temperatures (ii). (d) Image of the e-skin with an array of 10 � 10 attached to an artificial hand. (e) Responses (including optical images, temperature and strain
profiles) of the multimodal ion e-skin under a weak and strong unidirectional shear. Copyright � 2020, Science.
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Additionally, the direction of shear can be deduced from the
stretched region to the contact region according to the strain
profiles.

However, challenges about the authors’ achievements still
remain. First of all, employing the normalized capacitance (C/C0)
as strain sensing variable may give rise to a degree of measured
deviation. Because the reference capacitance (C0) is not a definite
value, which varies with different measured temperature. Addi-
tionally, this work is limitedly emphasized in decoupling only
two stimuli: the temperature and stretched strain. Actually, multi-
modal e-skin should be capable of perceiving and distinguishing
manifold stimuli, such as normal pressure, lateral strain, flexion
and vibration, so the realization of multifunctional e-skin in one-
structure or a single unit without mutual interface is still needed
to be further addressed.

In general, this work presents a multimodal ionic e-skin based
on ion relaxation dynamics, which can decouple thermal and
mechanical stretched strain. This multimodal haptic sensor
enables a real-time simultaneous perception for temperature and
strain by the intrinsic and extrinsic variables in a single unit with-
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out signal interference. This novel approach offers a significant
alternative for the design of skin-like e-skin for multifunctional
tactile sensing.
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