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As one of the most promising nonvolatile memory, resistive
switching random-access memory (ReRAM) has exhibited great
application potential for information storage and artificial
synapses in computing and neuromorphic systems, and has shown
great advantages including low power consumption, high integra-
tion density, simple device structure, and fast switching speed.
Because of remarkable optoelectronic properties, halide per-
ovskites as superstar materials have been intensively pursued in
the fields of solar cells, light-emitting diodes, transistors, photode-
tectors and lasers etc. [1–3]. Especially, halide perovskites hold the
ion migration and charge trapping effects which have attracted
tremendous attention as dielectric layer for ReRAM applications
in recent years. The studies of halide perovskites-based ReRAM
are motivated by the hysteresis from forward and reverse scans
of photovoltaic devices which reveal the feature of resistive
switching. After the first report of halide perovskite with resistive
switching behavior [4], the superiorities of simple and low-cost,
unique current-voltage (I-V) hysteresis and excellent light-respon-
sive characteristics in halide perovskites-based ReRAM are
exploited. Expanded studies present many outstanding results,
such as high ON/OFF ratio, robust endurance, long retention time,
multilevel data storage, good mechanical flexibility, and light-
modulated switching. Meantime, the studies of resistive switching
mechanism are also performed, mainly including filamentary-type
switching that the filaments are formed by active metal or halide
vacancy, and interface-type switching which is dominated by the
Schottky barrier between electrode and insulating layer.

Currently, according to the connectivity character of metal-
halide (MX6, M = Pb2+, Sn2+, Bi3+, etc.; X = Cl, Br, I) octahedra, halide
perovskite family can be classified into four structural dimension-
alities including three-dimensional (3D), two-dimensional (2D),
one-dimensional (1D) and zero-dimensional (0D) halide per-
ovskites. 3D halide perovskites (AMX3, A = Cs+, CH3NH3

+, etc.) with
cubic structure consist of corner-sharing MX6 octahedra, filled A
cations in 12-fold coordinated holes. Low-dimensional perovskites
(2D, 1D, and 0D) generally own layered, chainlike and isolated MX6

octahedra structure, respectively, and can be deemed as specific
cuts or slices of the 3D structure. At the same time, halide per-
ovskite family also could be classified into four main categories
from the chemical compositions with organic–inorganic lead
halide perovskites, inorganic lead halide perovskites, organic–inor-
ganic lead-free halide perovskites, and inorganic lead-free halide
perovskites.

Nowadays, 3D organic–inorganic lead halide perovskites and
inorganic lead halide perovskites are more conventional materials
for ReRAM. To overcome hygroscopicity of organic cations and high
toxicity of lead, inorganic cations and nontoxic element substitu-
tion could be effective solutions. ReRAM based on inorganic lead-
free halide perovskites, such as CsSnI3-based and Cs2AgBiBr6-based
devices have been preliminarily studied [5,6]. On the other hand,
low-dimensional halide perovskite structures are more stable than
3D perovskites due to their loose size constraint of A cations. Low-
dimensional structures generally possess high intrinsic resistivity
original form the isolated nature of octahedral complex which is
beneficial for improving device ON/OFF ratio by suppressing OFF
current. Therefore, low-dimensional halide perovskites-based
ReRAM recently also attract considerable research, such as 0D
Cs3Bi2I9-based and quasi-2D (PEA)2Cs3Pb4I13-based devices [7,8].
Both of them exhibit stable resistive switching with ultrahigh
ON/OFF ratio that can be used to avoid information misreading
and enhance the capacity of multilevel storage in ReRAM.

However, most of halide perovskite films for ReRAM are poly-
crystalline films as dielectric layers for resistive switching, thanks
to the simple fabrication process of polycrystalline films by precur-
sor preparation, spin-coating and low-temperature treatment.
Polycrystalline halide perovskite films, especially 3D organic–inor-
ganic and inorganic lead halide perovskites with defect-plagued
grain boundaries, are usually unstable in ambient conditions
resulting in the degradation of device performances. Additionally,
great amount of grain boundaries can also generate large leakage
current and operating current leading to high power consumption
in polycrystalline halide perovskites-based ReRAM. In contrast,
monocrystalline halide perovskites without grain boundaries and
pinholes, have presented superior intrinsic properties, such as
enhanced stability and improved carrier mobilities, and affirma-
tively offered an ideal platform to investigate the ultimate resistive
switching properties. In fact, halide perovskite single crystals have
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been explored extensively for applications in transistors and pho-
todetectors etc., but few about resistive switching studies so far.
Here, we summarize and discuss the recent advances of resistive
switching of halide perovskite single crystals.

Among of halide perovskite single crystals, 3D organic–inor-
ganic lead halide perovskite single crystals are more prevailing
for optoelectronic devices. In the field of ReRAM, 3D CH3NH3PbBr3
perovskite single crystal also has been reported for resistive
switching as shown in Fig. 1a [9]. The bulk perovskite single crys-
tals were prepared by inverse temperature crystallization method,
and further applied to manufacture Ag/single crystal/Ag device.
With recurrent voltage sweep, negative differential resistance
(NDR) effect known as the decrease of current with increasing volt-
age, was observed at both voltage polarities. Interestingly, by car-
rying out the switching measurements at elevated temperatures,
the NDR behavior was eliminated and replaced with small hystere-
sis window of bipolar switching. Notably, quantum dots embedded
perovskite single crystals were also synthesized and exhibited
enhanced ambient stability and resistive switching performance
in CH3NH3PbBr3 perovskite single crystal-based device. The resis-
tive switching behavior was dominated by the migration of Ag
ion and the formation of Ag filaments. In addition, the resistive
switching behaviors of CH3NH3PbBr3 perovskite single crystal were
also reported by Xing et al. [13] and Ke et al. [14], and exhibited
voltage-regulated multi-resistance states and switchable diode-
like behavior, attributing to the charge trapping/de-trapping
Fig. 1. (Color online) Resistive switching of halide perovskite single crystals. (a) Optical
curves at various sweep ranges for CH3NH3PbBr3 single crystals-based device. Reprinted
microscopy image of the CsPbBr3 perovskite single crystal device and typical I-V curve in
American Chemical Society. (c) 2D (PEA)2PbBr4 perovskite single crystal, atomic force
Reprinted with permission from Ref. [11], Copyright � 2017 American Chemical Society.
device, bipolar and threshold switching curves. Reprinted with permission from Ref. [12
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mechanism and trap-controlled space-charge-limited conduction
(SCLC) mechanism, respectively.

Except for 3D organic–inorganic lead halide perovskites, the
resistive switching of 3D inorganic lead halide perovskite (CsPbBr3)
single crystal also has been investigated [10]. The planar Ag/single
crystal/Ag device was fabricated by single crystal self-assembled in
liquid phase, and presented bipolar resistive switching behavior
(Fig. 1b), accompanied with low power of �3 � 10�8 W, ON/OFF
ratio up to 103, data retention time about 103 s and switching
endurance over 400 cycles. Studies of light-responsive resistive
switching are meaningful for multifunctional memory, herein,
the characteristics of light intensities modulated set and reset volt-
ages were obtained in CsPbBr3 single crystal-based device, ascrib-
ing to the photogenerated electron-hole pairs induced additional
internal electrical field that facilitated the formation of Ag and Br
vacancies conductive filaments.

Low power consumption is one of the most essential features of
ReRAM. Ren and co-workers [11] reported resistive switching
behavior based on exfoliated 2D (PEA)2PbBr4 (PEA, phenethylam-
monium) perovskite single crystal layers (Fig. 1c). Extremely low
operating currents down to 10 pA were achieved that maybe
related to the 2D perovskite structure of anisotropic charge trans-
port with suppressed out-of-plane direction, indicating the poten-
tial for low-power ReRAM applications. The perovskite single
crystal layers were obtained by exfoliating bulk single crystals
which were synthesized by an antisolvent vapor-assisted crystal-
images of pure and quantum dots embedded CH3NH3PbBr3 single crystals, and I-V
with permission from Ref. [9], Copyright � 2020 Wiley-VCH. (b) Scanning electronic
semilogarithmic scale. Reprinted with permission from Ref. [10], Copyright � 2020
microscopy images of an exfoliated layer and device structure, typical I-V curves.
(d) Photographs of Cs3Sb2Br9 perovskite single crystals and schematic illustration of
], Copyright � 2020 Elsevier.



Table 1
Comparison of performance parameters of perovskite single crystals-based resistive switching devices.

Device structure Set voltage (V) Operating current (A) ON/OFF ratio Retention (s) Endurance (cycles) Ref.

Ag/MAPbBr3-PbS QDs/Ag >10 10–5 >10 3600 100 [9]
Ag/CsPbBr3/Ag �3.4 �10–8 �103 >103 400 [10]
graphene/(PEA)2PbBr4/Au 2.8 10–11 �10 1000 100 [11]
Au/Cs3Sb2Br9/Au Nonvolatile 2 <10–3 106 2 � 104 – [12]
Au/Cs3Sb2Br9/Au Threshold �2.7 <10–3 >103 – 200 [12]
Au/MAPbBr3/Au �20 <10–6 1.44–8.1 – 320 [13]
Au /MAPbBr3/Au (or Pt) 39/37 10–6 �54 – – [14]
Au/(PEA)2PbI4/Au (or FTO) 4.2 10–7 �103 – – [15]
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lization method. Subsequently, perovskite single crystal layers
were incorporated within a graphene/2D perovskite single crys-
tal/Au vertical structure using a polydimethylsiloxane (PDMS)
stamp transfer technology. While the sweep voltages were applied
at Au electrode and graphene was grounded, the device showed
bipolar resistive switching behavior after an electroforming pro-
cess, with ON/OFF ratio of �10 and switching endurance up to
100 cycles. By modulating compliance current, multilevel storage
was realized with data stability up to 1000 s. The resistive switch-
ing mechanism was ascribed to the Br ion and vacancy movement
to form filaments. In addition, this device was also performed to
mimic biological synapses with the functionalities of short-term
potentiation, long-term potentiation and paired pulse facilitation
etc. particularly the energy consumption of the single crystal-
based device (400 fJ/spike) was very close to that of biological
synapses (1–100 fJ/spike). Similarly, 2D (PEA)2PbI4 perovskite sin-
gle crystal-based memory device also has been studied in which
the resistive switching behavior was related to the I ion filament
and charge trapping [15].

In order to solve the problems of instability and toxic lead in
organic–inorganic lead halide perovskite-based ReRAM, Han and
co-workers [12] reported resistive switching behavior of
monocrystalline lead-free all-inorganic Cs3Sb2Br9 perovskite nano-
flake in 2020 (Fig. 1d). The perovskite single crystal nanoflakes
with a diameter of �100 lm and thickness of �100 nm, were pre-
pared by inverse temperature crystallization method. A planar
structure of Au/Cs3Sb2Br9/Au device on SiO2/quartz substrate was
fabricated by direct dripping, crystallization or dry-transfer strat-
egy. Intriguingly, the device presented not only nonvolatile bipolar
resistive switching, but also volatile threshold switching by con-
trolling the channel length, that the maximum and minimum
channel lengths for bipolar and threshold switching are 5 and
10 lm, respectively. Data retention test of bipolar switching
behavior was carried out for 2� 104 s with ON/OFF ratio of approx-
imately 106. Threshold switching, meaning the low-resistance
state can spontaneously reinstate to high-resistance state during
the backward sweep, can be cycled for 200 times with ON/OFF
ratio over 103 and record-low switching electric field of
2.2 � 105 V m�1. The Br vacancy filaments are responsible to the
resistive switching behavior. Similarly, the device was used to imi-
tated short-term Ca2+ dynamics of biological synapses, further
applied as a reservoir element in neural network-based reservoir
computing system to process temporal information exhibiting over
96% recognition accuracy of four letters after successfully training.

Table 1 shows the comparison of performance parameters of
single crystals-based resistive switching devices. They show the
comparable performance with polycrystalline perovskites-based
devices, notably low operating current in most of single crystals-
based devices. Although, the recent research results of halide per-
ovskite single crystals have already shown outstanding resistive
switching behavior and they exhibit application potential for low
power consumption resistive switching due to their stable crystal
structure without grain boundaries and pinholes. There are still
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several foremost challenges for large-scale applications. To the best
of our knowledge, only these types of halide perovskite single crys-
tals are investigated for resistive switching. And most of them
relied on the Br-based perovskites. Therefore, other halide per-
ovskite single crystals also need to be further exploited, especially
low-dimensional lead-free inorganic perovskite single crystals
which are with high stability and low toxicity, as well as more
studies of resistive switching behavior and mechanism. Halide per-
ovskite single crystals have more excellent photoresponsive prop-
erties than polycrystalline perovskites. Light-modulated resistive
switching should be paid more attention, further for their multi-
functional application in the fields of visual memory, photonic
synapses and wireless communication etc. On the other hand, both
large size of single crystals and complicated fabrication of device
structures in these studies are inapplicable for high density inte-
gration. Therefore, based on optimizing device structures, halide
perovskite single crystal films, even micro-nano scale film arrays
and crossbar arrays for resistive switching may be the next
research topic.
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