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High-Precision Multibit Opto-Electronic Synapses Based on
ReS2/h-BN/Graphene Heterostructure for Energy-Efficient
and High-Accuracy Neuromorphic Computing

Zheyu Yang, Shida Huo, Zhe Zhang, Fanying Meng, Baiyan Liu, Yue Wang, Yuexuan Ma,
Zhiyuan Wang, Junxi Xu, Qijia Tian, Yaohui Wang, Yingxuan Ding, Xiaodong Hu,
Yuan Xie,* Shuangqing Fan,* Caofeng Pan,* and Enxiu Wu*

Neuromorphic computing integrates sensing, memory, and computation
to surpass the von Neumann bottleneck. Opto-electronic synapses, capable
of handling both optical and electrical signals, closely emulate biological
synapses and enable advanced neuromorphic functionalities. Among them,
optoelectronic floating-gate transistors (OEFGTs) based on 2D van der Waals
(vdW) heterostructures offer high bandwidth, minimal crosstalk, andmultilevel
data storage. However, improving optical synaptic weights remains crucial for
enhancing learning efficiency and reducing power consumption. In this study,
an OEFGT-based opto-electronic synapse using a rhenium disulfide/hexagonal
boron nitride/graphene (ReS2/h-BN/Gra) vdW heterostructure is demon-
strated. This device achieves unprecedented high-precision multibit optical
synaptic weights, reaching 1024 discrete levels (10-bit resolution)—the highest
reported for 2D-material-based OEFGTs. Consequently, it realizes ultra-low
energy consumption (500 fJ/spike) and various synaptic behaviors, including
electrical and optical paired-pulse facilitation, depression, and spike-timing-
dependent plasticity. Furthermore, the device successfully mimics classical
conditioning (Pavlov’s dog experiment), and primate associative learning, and
performs reconfigurable logic operations (“AND”, “OR”, and “NIMP”). An
optoelectronic neural network incorporating this synapse achieved 98.8% accu-
racy after 200 epochs in a color vision recognition task. This work highlights sig-
nificant potential for OEFGT-based optoelectronic synapses with multibit op-
tical weights in energy-efficient, high-performance neuromorphic computing.
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1. Introduction

Neuromorphic computing (NC) is inspired
by the information processing and trans-
mission mechanisms of biological neural
structures.[1,2] By integrating sensing,
memory, and computation at the hardware
level, NC aims to alleviate the vonNeumann
bottleneck caused by the physical separa-
tion of memory and the central processing
unit.[3–6] The fundamental unit of biological
neural structures is the synapse; thus, the
development of artificial synaptic devices
is essential for realizing NC. These de-
vices emulate biological synapses through
functionalities such as synaptic weight
modulation, information encoding and
decoding, and pattern recognition.[1,7–15]

Extensive research has explored various
artificial synapses, including all-electrical
synapses,[7–9] all-optical synapses,[1,10,11]

and optoelectronic synapses.[12–15] Among
these, opto-electronic synapses most
closely resemble the hybrid signal pro-
cessing mechanism of biological synapses,
enabling complex functions such as as-
sociative learning and opto-electronic
neural computing.[1,7–11] Opto-electronic
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Figure 1. Device structure, memory performance and memory mechanism. Schematic illustration a) and optical microscopy b) of the ReS2/h-BN/Gra
heterostructure. c) Memory window as a function of the maximum value of the Vgs (Vgs,max). Inset is the transfer characteristic curves under different
Vgs scan ranges. d) Retention characteristic and the endurance performance of the nonvolatile memory after applying a ±40 V, 1 ms pulse. e) Schematic
of the energy bands during electrical programming and erasing. f) Schematic of the energy bands during optical erasing.

floating-gate transistors (OEFGTs) have emerged as promising
candidates for opto-electronic synapses,[16–19] due to their high
bandwidth, low crosstalk, and multilevel storage capability.
2D materials, characterized by atomic thickness, dangling

bond-free surfaces, and high carrier mobility, effectively miti-

gate the short-channel effects of silicon-based transistors.[20,21]

Their electronic transport properties can also be precisely con-
trolled via external fields and van der Waals (vdW) heteroge-
neous integration,[20,22–24] making them ideal for OEFGT-based
optoelectronic synapses. Various studies have reported OEFGTs
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constructed from 2D vdW heterostructures, such as molyb-
denum disulfide/hexagonal boron nitride/graphene (MoS2/h-
BN/Gra),[15] stannic sulfide (ReS2)/h-BN/Gra,

[16] and platinic sul-
fide (PtS2)/h-BN/Gra.

[17] In these systems, the excitatory synapse
was induced by optical pulses, while the inhibitory synapse was
triggered by electrical pulses.[15–17] These OEFGTs successfully
simulate a range of synaptic functions and performpattern recog-
nition tasks.[15–17] However, their optical synaptic weights remain
limited.
Further enhancement of optical synaptic weight precision is

crucial for reducing power consumption and optimizing learn-
ing efficiency in pattern recognition tasks.[15,25] The number of
optical synaptic weights is directly related to the carrier trap-
ping/releasing properties and the bandgap structure of 2Dmate-
rials. Rhenium disulfide (ReS2) exhibits strong light absorption,
high carrier mobility, and a direct bandgap characteristic that re-
mains independent of layer number,[26,27] making it a promising
channel material for OEFGT. By selecting ReS2 and optimizing
the light source parameters (including wavelength, power, and
pulse frequency), it is feasible to achieve high-precision multibit
optical synaptic weights.
In this work, we fabricated an optoelectronic synapse based on

an OEFGT constructed from ReS2/h-BN/Gra vdW heterostruc-
ture. The device demonstrates high-precision multibit optical
synaptic weights (1024 levels, 10-bit resolution), representing the
largest value reported for OEFGTs based on 2D vdW heterostruc-
tures. This superior storage capability enables exceptionally low
energy consumption (500 fJ/spike). Exploiting these features, the
OEFGT emulates a series of synaptic functions, including elec-
trical or optical paired-pulse facilitation (PPF), electrical paired-
pulse depression (PPD), and electrical or optical spike-timing-
dependent plasticity (STDP). Furthermore, it successfully classi-
cal conditioning in Pavlov’s dog experiment, associative learning
in primates, and reconfigurable logic operations such as “AND”,
“OR”, and “NIMP”. In a color vision test plate recognition task,
the optoelectronic neural network achieved a high recognition
accuracy of 98.8% after 200 learning epochs. Our work demon-
strates the high-precision multibit optical synaptic weights in
OEFGT-based optoelectronic synapses, paving the way for next-
generation energy-efficient AI hardware, neuromorphic proces-
sors, and artificial visual perception systems.

2. Results and Discussion

2.1. Device Structure, Memory Performance, and Memory
Mechanism

The schematic and optical images of the opto-electronic synap-
tic floating-gate transistor (OEFGT) based on rhenium disul-
fide/hexagonal boron nitride/graphene (ReS2/h-BN/Gra) het-
erostructure are shown in Figure 1a,b. The ReS2, h-BN, and
graphene flakes function as the channel, tunneling layer, and
floating gate, respectively. The fabrication details of the device are
described in the Experimental section. In the biological synapse
simulation, the gate voltage (Vgs) and the light incident on the
channel activate the presynaptic terminal, while the drain-source
current (Ids) represents the postsynaptic current (PSC). The thick-
ness of ReS2, h-BN, and graphene are 7.2, 15.5, and 6.8 nm, re-
spectively (Figure S1, Supporting Information). Figure S2 (Sup-

porting Information) shows the Raman spectra of the ReS2/h-
BN/Gra heterostructure. Specifically, the two peaks at 160 and
213 cm−1 correspond to ReS2, while the peak at 1363 cm

−1 orig-
inates from phonon mode in h-BN. Additionally, the peaks at
1581 and 2712 cm−1 are two characteristic peaks of multilayer
graphene.
The OEFGT based on ReS2/h-BN/Gra heterostructure can

function as a nonvolatile memory through the charge tunnel-
ing effect. Prior to the start of the experiment, we confirmed
the ohmic contact between the electrodes and the 2D material
and therefore used a constant 2 V source-drain voltage to mon-
itor the channel conductance (Figure S3, Supporting Informa-
tion). We tested the memory window, retention characteristics,
and endurance of the device. Figure 1c shows that the memory
window (ΔV) increases almost linearly with the maximum value
of Vgs (Vgs,max). The max ΔV is 85 V when the scanning range
of the Vgs is ±60 V. This indicates the excellent tuning capabil-
ity of the Vgs on charge trapping in the floating gate. The device
was erased and programmed using Vgs pulses of ±40 V with a
width of 1 ms. As shown in Figure 1d, the device exhibits a high
erasing/programming ratio (≈107), excellent retention character-
istics (>1000 s), and high durability and stability (1000 cycles).
This superior storage performance forms the foundation for low-
power, high-speed, multi-bit artificial synapses.
Furthermore, Figure 1e illustrates the mechanism of the non-

volatilememory through an energy band diagram.When the pos-
itive Vgs pulse is applied, electrons in the ReS2 tunnel through the
h-BN and get stored in the graphene. After the positive Vgs are re-
moved, the electrons stored in the graphene cannot return to the
ReS2 due to the high tunneling barrier of the h-BN, resulting in
a programming state with low Ids. Conversely, when the negative
Vgs pulse is applied, the stored electrons in the graphene are re-
leased into the ReS2, switching the device to the erasing state with
high Ids. Figure 1f depicts the mechanism of the optical erasing
through the energy band diagram. When a light pulse is applied
to the ReS2 channel, ReS2 generates a large number of photo-
generated electron-hole pairs. Under the influence of electrons
stored in the graphene, the photo-generated holes overcome the
tunnel barrier and get stored in the graphene. The ReS2 chan-
nel conductivity exhibits a nonvolatile enhancement effect due
to the capacitive coupling of the graphene and the accumulation
of photo-generated electrons. The optical erasing operation re-
quires only low-power visible light, without the need for addi-
tional gate voltage, which is beneficial for constructing energy-
efficient computing systems. Moreover, ultraviolet light has been
proven to excite defect states in h-BN, serving as specific charge-
trapping sites. While the channel receives electrons from h-BN
layer, the holes are simultaneously stored at the trapping cen-
ters. The physical mechanism increases the storage capacity of
the optoelectronic synapse in the ultraviolet spectrum, thereby
improving the adaptability and compatibility of the visual neural
network.

2.2. Synaptic Plasticity of Electrical Synapses

The voltage pulses applied to the bottom gate can trigger signal
transmission in the biomimetic synapse, as shown in Figure 2a.
A variety of typical synaptic functions have been simulated by
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Figure 2. Synaptic plasticity of electrical synapse. a) Schematic illustration of a synapse transistor driven by electrical spikes. b) PSC as voltage amplitudes
vary from −15 to −40 V (1 ms), corresponding to SADP. PSC as pulse widths range from 100 ns to 10 ms (−20 V), corresponding to SWDP. c) Functional
relationship between the PPF index and ΔT. Inset is input Vgs pulses (−10 V, 1 ms) and current responses for PPF. d) Functional relationship between
the PPD index and ΔT. Inset is input Vgs pulses (10 V, 1 ms) and current responses for PPD. e) PSC as pulse numbers increase from 10 to 100 within
10 s, corresponding to SFDP (−10 V, 1 ms). PSC with an increasing number of voltage pulses from 1 to 10, corresponding to SNDP (−10 V, 1 ms, 1 Hz).
f) Process of electrical LTP and electrical LTP through electrical programming and erasing. Programming pulses: −4.5 V, 10 ms, 1 Hz; erasing pulses:
9 V, 10 ms, 1 Hz.
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altering the characteristic parameters of the voltage pulses,
including spike amplitude-dependent plasticity (SADP), spike
width-dependent plasticity (SWDP), spike number-dependent
plasticity (SNDP), and spike frequency-dependent plasticity
(SFDP). As illustrated in Figure 2b, negative electrical spikes with
varying amplitudes (−15 to −40 V, 1 ms) and widths (−20 V,
100 ns to 10ms) were applied to the synapse device.With increas-
ing amplitude and width, more electrons are released into the
channel, resulting in enhanced excitatory PSCs. Similarly, when
positive pulses of different amplitudes and widths are applied,
inhibitory PSCs decrease with the widening and heightening of
the positive spikes (Figure S4, Supporting Information).
Subsequently, by applying two consecutive Vgs pulses (−10 and

10 V) with a width of 1 ms, two distinct forms of short-term
synaptic plasticity (STSP), namely paired-pulse facilitation (PPF)
and paired-pulse depression (PPD), were demonstrated. The PSC
changes evoked by the two spikes are represented by A1 and A2,
thus allowing the calculation of PPF (PPD) index as A2/A1. The
PPF and PPD behaviors are strongly correlated with the time in-
terval (ΔT) of two consecutive Vgs pulses and the relaxation time
(𝜏) of the tunneling electrons. They exhibit a typical biphasic ex-
ponential behavior, which can be fitted to a bi-exponential equa-
tion as follows:[28]

PPF (PPD) = C1exp
(
−ΔT

𝜏1

)
+ C2 exp

(
−ΔT

𝜏2

)
(1)

where C1 and C2 are the initial enhancement amplitudes for fast
and slow decay, respectively; 𝜏1 and 𝜏2 are the corresponding re-
laxation times. As shown in Figure 2c,d, the PPF and PPD index
exhibit a monotonous decrease with ΔT. For electrical synapses,
the PPF index decreases from 168% to 138%, accompanied by
𝜏1 = 0.05 s and 𝜏2 = 1.29 s; Similarly, the PPD index decreases
from 122% to 107%, with 𝜏1 = 0.09 s and 𝜏2 = 1.55 s. This sug-
gests that the synaptic potentiation process exhibits a broader dy-
namic range, which is advantageous formore refined biomimetic
learning. On the other hand, the extended relaxation time during
the synaptic depression process may provide an advantage in the
simulation of long-term plasticity.
Long-term synaptic plasticity (LTSP) is crucial for the adap-

tation, learning, and recovery of the nervous system. The expo-
nential decay of the PPF index suggests that reducing the inter-
val time of presynaptic spikes may effectively enhance synaptic
connections. As shown in the left plot of Figure 2e, after 10 s
of synaptic potentiation and 10 s of relaxation, the PSC gradu-
ally decays and stabilizes at a specific value. As the pulse (−10 V,
1 ms) frequency increases from 1 to 10 Hz, the final output cur-
rent increases from 35 to 85 nA. Similar to the process of mem-
ory consolidation in the brain, the transition from STSP to LTSP
can be achieved by repeatedly applying presynaptic spikes. The
device was subjected to a different number of pulses (from 1 to
10) with the same amplitude, width, and frequency (−10 V, 1 ms,
1 Hz), and the PSC was recorded immediately after the pulses
were removed. The fitting curve of the normalized current de-
cay is shown in the right plot of Figure 2e. The synaptic weight
quickly drops to 64% of the initial state after one pulse. When the
number of applied pulses increases to 10, the synaptic weight sta-
bilizes at 89%. In artificial neural networks, the number of synap-
tic weights is crucial for pattern recognition accuracy.[25,29] By ap-

plying repeated programming (−4.5 V, 10 ms, 1 Hz) and erasing
(9 V, 10 ms, 1 Hz) pulses, long-term potentiation (LTP) and long-
term depression (LTD) were induced. During electrical LTP and
electrical LTD processes, the number of synaptic weights reached
128 (seven bits), as shown in Figure 2f.

2.3. Synaptic Plasticity of Opto-Electronic Synapses

In addition to the axon-dendrite structure excited by electri-
cal spikes, light spikes can directly activate the axon-axon sig-
naling pathway at the postsynaptic end (Figure 3a). The artifi-
cial synapse can recognize optical signals within a wavelength
range from 255 to 638 nm, with consistent intensity and dura-
tion (100 mW cm−2, 1 s) for all signals (Figure S5, Supporting
Information). To achieve the highest current spikes within the
visible light spectrum, a 405 nm laser was employed to stim-
ulate artificial synapses in subsequent experimental sections.
Figure 3b presents a thermogram of Ids correlated with light in-
tensity and pulse width. Evidently, light spikes with greater power
and width trigger an enhanced charge tunneling effect and exci-
tatory PSCs. In biological visual systems, the PPF mechanism of
optical synapses can enhance neuronal synchrony and improve
of image processing efficiency.[25,29] Figure 3c demonstrates the
PPF behavior achieved by applying two light pulses with iden-
tical intensity (100 mW cm−2) and width (1 s). The PPF index
decreases from 153% to 136%, with 𝜏1 = 0.17 s and 𝜏2 = 1.61 s.
Furthermore, by increasing the number and frequency of light
pulses, the optical synapse transitions fromSTSP to LTSP (Figure
S6, Supporting Information).
In the weight update process of the optoelectronic synapse,

continuous light (1 mW cm−2, 10 ms, 1 Hz) and positive volt-
age (4.5 V, 10 ms, 1 Hz) pulses were used as excitation signals,
as illustrated in Figure 3d. During the optical LTP process, the
number of synaptic weights reached 1024 (10 bits), nearly an or-
der of magnitude higher than that of the electrical LTP process.
The multilevel conductance states of the optical synapse offer a
computational paradigm closer to the biological brain, facilitating
the development of more efficient and intelligent biomimetic vi-
sual neural networks. Additionally, the energy consumption per
operation is 50 pJ/spike and 500 fJ/spike in the electrical and
optical modes, respectively (FigureS7, Supporting Information).
Optical programming exhibits lower energy consumption com-
pared to electronic programming, attributed to the combined ef-
fect of the stored charge in the floating gate and optical input
from the channel, which creates a lower tunneling barrier for
photo-generated holes. Consequently, the minimum value unit
of tunneling charge can be precisely compressed by controlling
the power, duration, and frequency of optical pulses. Moreover,
multilayer graphene, used as a floating gate to trap charge, ex-
pands the dynamic tuning range of synaptic weights. The en-
hancement in dynamic range and resolution is the direct cause
of achieving storage levels of 10 bits. To benchmark our findings,
Figure 3e compares the energy consumption and storage density
of other optoelectronic synapses.[12,13,15,30–38] Our synaptic unit
demonstrates persistent, robust, and energy-efficient storage op-
erations, particularly offering a number of synaptic weights ten
times higher than those reported for state-of-the-art devices in the
literature.[12,13,15,30–38]
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Figure 3. Synaptic plasticity of opto-electronic synapse. a) Schematic illustration of a synapse transistor modulated by light spikes. b) Thermal map
of the Ids as a function of optical power intensity and pulse width. c) Relationship between the optical PPF index and ΔT. Inset is the input signal for
optical PPF and its corresponding response (100 mW cm−2, 1 s). d) The process of optical LTP and electrical LTD. Programming pulses: 1 mW cm−2,
10 ms, 1 Hz; erasing pulses: 9 V, 10 ms, 1 Hz. e) Comparison of the proposed OEFGT based on ReS2/h-BN/Gra heterostructure with previously reported
synaptic devices on energy consumption and storage density. f) Relationship betweenΔW andΔT in STDP. Inset is the input signal (voltage: -10 V, 1 ms,
light: 1 mW cm−2, 1 s) for STDP and its PSC response.
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Furthermore, we explored spike-timing-dependent plasticity
(STDP), which is a learning rule that modifies the strength of
connections between neurons based on the order of their spike
signals.[39] In the canonical STDPmechanism, if the presynaptic
neuron fires before the postsynaptic neuron, the synaptic connec-
tion is potentiated; conversely, if the postsynaptic neuron fires
first, the connection is depressed. It enables neural networks
to adapt to dynamic environments by dynamically adjusting the
strength of synaptic connections. Through optoelectronic cou-
pling at the presynaptic and postsynaptic terminals, the OEFGT
based on ReS2/h-BN/Gra heterostructure successfully mimics
the classical STDP. As shown in the inset of Figure 3f, updat-
ing the synaptic weight requires modifying the ΔT between the
presynaptic voltage pulse (-10 V, 1 ms) and the postsynaptic light
pulse (1 mW cm−2, 1 s). When ΔT > 0, the electrical spike pre-
cedes the optical spike; conversely, whenΔT< 0, the optical spike
is triggered first. The relative change in synaptic weight (ΔW) is
calculated using the following equation:[40]

ΔW =
WFinal −WInitial

WInitial
(2)

whereWInitial represents the initial synaptic weight andWFinal is
the final synaptic weight after two pulses. Figure 3f illustrates the
dependence ofΔW onΔT for the synaptic device. This STDP rule
can be fit by the following equation:[40]

ΔW =
⎧⎪⎨⎪⎩
A1 exp

(
−ΔT

t1

)
+ A01 (ΔT < 0)

A2 exp
(
−ΔT

t2

)
+ A02 (ΔT > 0)

(3)

where A1 and A2 are scaling factors, t1 and t2 are time constants,
and A01 and A02 are constants. Based on the STDP fitting re-
sults, t1 and t2 are determined to be 0.37 and 1.27 s, respectively.
The Hebbian learning rule,[39] a fundamental model for weight
adjustment, provides the theoretical foundation for establishing
neural network models. The STDP fitting curve closely aligns
with the classical Hebbian rule, while its asymmetry potentially
facilitates complex functions such as nonlinearmapping and pat-
tern separation.[39] The asymmetry in the sequence of output cur-
rent and input pulses suggests that the underlying mechanisms
for triggering excitatory responses are distinct for the two types
of signals. This discrepancy is likely due to the gate modulation
effect during the electrical pulse.

2.4. Complex Associative Learning and Reconfigurable Logic
Functions

Paired associate learning in monkey brains represents a com-
plex form of associative learning, forming neural connections
between different brain regions to trigger cognitive responses
to specific stimuli. In paired-associate tasks, an association is
formed between two unrelated objects through the repeated pair-
ing of a target item (e.g., color) with a specific stimulus (e.g.,
fruit). By utilizing the optoelectronic coupling of the OEFGT,
we successfully established a pairing relationship between two
colors and two fruits. Output currents below 200 nA and above

300 nA represented ineffective responses and pain perception, re-
spectively. The pairing relationship was successfully established
when the output current was between 200 and 300 nA. The exper-
iment used electrical pulse sequences (1ms, 1Hz, 10 pulses) and
optical pulse sequences (405 nm, 0.5 s, 1 Hz, 10 pulses) to sim-
ulate fruits and colors. Electrical pulses with amplitudes of −10
and−5 V represented banana and grape, denoted as signals 1 and
2, while optical pulses with power densities of 0.2 and 2mWcm−2

were used for yellow and purple cards, denoted as signals 1′ and
2′ (Figure 4a).
A single input of signals 1 and 1′ demonstrated an ineffec-

tive pairing. After 5 training epochs, the association between
the banana and the yellow card was successfully established.
However, pairing signal 1 with 2′ led to a significant pain re-
sponse (Figure 4b). Similarly, the pairing task for signal 2 with 2′

was successful, while pairing signal 2 with 1′ resulted in failure
(Figure 4c). These results suggest that the decay and forgetting
of associative memory are governed by the spontaneous relax-
ation of photo-generated electrons. While the establishment and
re-establishment of conditioned reflexes are linked to the excita-
tion of these electrons.
Conditioned reflex, a form of associative learning, allows the

brain to predict environmental changes and generate adaptive
responses. The classically conditioned reflex experiment, partic-
ularly Pavlov’s dogs,[41] demonstrates this process. In the exper-
iment, a neutral stimulus (e.g., a bell sound) becomes capable
of eliciting a conditioned reflex through its pairing with an un-
conditioned stimulus (e.g., food). Under the optoelectronic hy-
brid modulation mode, the OEFGT successfully simulates an ex-
tended version of Pavlov’s experiment, including the establish-
ment, extinction, re-establishment, and forgetting of conditioned
reflexes. An output current of 100 nA was selected as the thresh-
old for salivation. Voltage pulses (−10 V, 1 ms) served as the
bell sound to trigger the conditioned reflex, while light pulses
(405 nm, 2 mW cm−2, 0.5 s) mimicked the food stimulus induc-
ing salivation, as shown in Figure 4a. Prior to training, 10 volt-
age pulses resulted in a PSC of 80 nA, insufficient to induce sali-
vation. However, 10 light pulses increased the PSC to 240 nA,
well above the threshold. During the training process, 10 syn-
chronized voltage and light pulses established an association be-
tween the bell sound and food. After training, electrical stimula-
tion alone increased the PSC to 130 nA, demonstrating the es-
tablishment of a conditioned reflex to the bell sound (Figure 4d).
Following a 100-s rest, the same electrical stimulation no longer
elicited salivation, indicating the extinction of the conditioned re-
flex. Due to residual photo-generated electrons in the channel,
the conditioned reflex could be re-established with fewer retrain-
ing cycles. After five retraining cycles, electrical stimulation in-
creased the PSC to 120 nA (Figure 4e). After an additional 500-
s rest, the association between the bell and food was completely
forgotten. As the device’s conductivity fully recovered to its initial
state, the bell sound stimulation after five retraining cycles failed
to induce salivation (Figure 4f). These simulation experiments
of paired associate learning and Pavlov’s dogs indicate that the
OEFGT based on ReS2/h-BN/Gra heterostructure can serve as a
fundamental component for brain-like computing systems.
In addition to neuromorphic sensing,memory, and processing

capabilities, dynamically reconfigurable logic operations can be
achieved through optoelectronic synergy at dual-input terminals.

Adv. Funct. Mater. 2025, 2509119 © 2025 Wiley-VCH GmbH2509119 (7 of 12)
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Figure 4. Paired associate learning in a monkey brain and extended experiment on Pavlov’s dog. a) Correlation between Vgs/optical pulses and the
banana/yellow card/grape/purple card/bell/food stimuli. b) Successful pairing of bananas and yellow in the test phase. Ineffective response to the
pairing of bananas and purple. c)Successful pairing of grapes and purple in the test phase. Ineffective response to the pairing of grapes and yellow.
d) Establishment of the conditioned reflex. e) Extinction of the conditioned reflex. f) Complete forgetting of the conditioned reflex.
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Figure 5. Reconfigurable logic gates with optical and electrical inputs. a) Readout current for the “AND” operation. b) Readout current for the “OR”
operation. c) Readout current for the “NIMP” operation. d) Decoding process of the current information based on ASCII rules.

The output current is determined by the combined power den-
sity of the light pulse and the amplitude of the Vgs pulse. By se-
lecting an appropriate threshold current, the device can perform
various logic functions using both optical (1 s pulse width) and
electrical (10 ms pulse width) input signals. For the “AND” oper-
ation, the input signals consist of a 1 mW cm−2 light pulse and
a −5 V Vgs pulse. For the “OR” operation, the input signals are a
100 mW cm−2 light pulse and a −10 V Vgs pulse. For the “NIMP”
operation, the input signals include a 100 mW cm−2 light pulse
and a 10 V Vgs pulse. The “0” and “1” states of the input signals
correspond to the “OFF” and “ON” states of the optical or electri-
cal inputs, respectively. Figure 5a–c illustrate the output currents
for the AND, OR, and NIMP operations, respectively, where an
output current below 100 nA is defined as “0” and a current ex-
ceeding 100 nA is defined as “1”.
The “AND” logic operation enables hardware-interconnected

data communication, ensuring the security of encoding, trans-
mission, and decoding processes. In this context, the ON/OFF
state of the light pulse represents the first digit of the digital in-
formation, while the ON/OFF state of the Vgs pulse represents
the second digit. In a proof-of-concept experiment for data com-
munication, the output currents for the signal units 00, 01, 10,

and 11 are 2 nA (denoted as A), 28 nA (denoted as B), 53 nA
(denoted as C), and 140 nA (denoted as D), respectively. Accord-
ing to the American Standard Code for Information Interchange
(ASCII), each element of the string “Tianjin” is encoded as a com-
bination of four output currents: BBBA, BCCB, BCAB, BCDC,
BCCC, BCCB, BCDC. To avoid interference between signal units,
electrical erasure of the flash memory is required after each en-
coding. Finally, the read signal can be decoded based on the op-
toelectronic characteristics of the hardware device, as illustrated
in Figure 5d.

2.5. Opto-Electronic Neural Network for Image Classification

To evaluate the learning capability of opto-electronic synapse de-
vices, we constructed an opto-electronic neural network (ONN)
based on a three-layer perceptron architecture. The ONN con-
sists of an input layer (784 neurons), a hidden layer (100 neu-
rons), and an output layer (five neurons), which is used for the
perception, training, and recognition of color vision test plates, as
shown in Figure 6a. The images were preprocessed and rescaled
to 28 × 28 pixels to match the 784 input neurons; the neural

Adv. Funct. Mater. 2025, 2509119 © 2025 Wiley-VCH GmbH2509119 (9 of 12)
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Figure 6. Hardware simulation of the ONN. a) Schematic diagram of a three-layer ONN consisting of 784 input neurons, 100 hidden neurons, and five
output neurons. b) Schematic diagram of the hardware circuit, including the opto-electronic synapse array and peripheral circuits. c) Recognition rates
as a function of optical-electrical and electrical-electrical training epochs. d) Confusion matrix showing the comparison between expected and predicted
values after 200 optical-electrical and electrical-electrical training epochs.

network classifies images into five categories: “animal” (labeled
as “0”), “graphic” (labeled as “1”), “number” (labeled as “2”), “En-
glish word” (labeled as “3”), and “Chinese word” (labeled as “4”),
corresponding to the five output neurons.
The training process of the ONN follows the backpropagation

algorithm, where 10 000 initial samples and their weighted sums
are fed into the input and hidden layers. After activation by the
log-sigmoid function, the classification result is passed to the out-
put layer. Figure 6b shows the simulated circuit diagram, includ-
ing the opto-electronic synapse array and peripheral circuits. The
weight update module operates based on the inner product of
the input signal vector and the synapse matrix, updating synaptic
weights and providing feedback to the synapse array. To evaluate
the potential of OEFGT with multilevel storage states, 1000 test
images were used for pattern recognition with both electrical and
optoelectronic synapses.
The test results are presented in Figure 6c. The electrical

synapses, using electrical LTP and electrical LTD synaptic weights
to perform electrical-electrical training, achieved a recognition
rate of 95.8% after 200 training epochs. The optoelectronic
synapses, employing optical LTP and electrical LTD synaptic

weights for optical-electrical training, exhibited a higher recog-
nition rate of 98.8%. After 200 training epochs, the confusion
matrix generated from the classification results is shown in
Figure 6d. Thismatrix demonstrates that the ONN achievesmore
accurate image classification in the optical-electrical mode, cov-
ering categories from “0” to “4”. Clearly, optoelectronic synapses,
with low energy consumption and multiple conductance states,
present a promising approach for the development of efficient
neuromorphic computing systems.

3. Conclusion

In summary, we have successfully fabricated an opto-electronic
synapse device based onReS2/h-BN/Graphene van derWaals het-
erostructure, achieving high-precision multibit synaptic weights
(1024 levels, 10-bit resolution) and ultra-low energy consump-
tion (500 fJ/spike) in optical mode. Benefitting from the su-
perior storage capability, the synapse device successfully sim-
ulated optoelectronic modulated synaptic plasticity. Further-
more, through the optoelectronic coupling at the dual-input
terminals, the device achieved biomimetic associative learning,

Adv. Funct. Mater. 2025, 2509119 © 2025 Wiley-VCH GmbH2509119 (10 of 12)
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reconfigurable logic functions, and reliable data communication,
confirming its in-memory computing capabilities. Finally, based
on the LTP/LTD characteristics under optical erasing and electri-
cal programming processes, we simulated an efficient ONN sys-
tem for pattern recognition of color vision test plates, achieving
high recognition accuracy. This work highlights the potential of
OEFGT-based optoelectronic synapses with unprecedented opti-
cal synaptic weights, paving theway for energy-efficient and high-
accuracy neuromorphic computing.

4. Experimental Section
Device Fabrication: Graphene, h-BN, and ReS2 flakes were sequentially

transferred onto a 285 nm SiO2/Si substrate through mechanical exfo-
liation. The patterning of the electrodes was achieved by electron beam
lithography with positive photoresist. After exposure and development,
10/30 nmCr/Au electrodes were deposited via electron beam evaporation.
Finally, the device was completed after a standard lift-off process.

Device Characterization: Raman spectra were obtained using a com-
mercial Raman spectrometer (Renishaw, Inc.) with a 532 nm laser source.
AFM images were taken with a Bruker Dimension. Electrical and optical
tests were conducted at room temperature and in the dark on a Metatest
E2 fiber-coupled photoelectric test probe station. The electrical pulses for
gate input were provided by a Keithley 2450 single-channel system digital
source meter, while the optical pulses received by the channel were gener-
ated by a mLaser series light source.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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